
Compiling Higher-Order Specifications to SMT Solvers:
How to Deal with Rejection Constructively

Matthew L. Daggitt

matthewdaggitt@gmail.com
Heriot-Watt University

Edinburgh, UK

Robert Atkey

robert.atkey@strath.ac.uk
University of Strathclyde

Glasgow, UK

Wen Kokke

University of Strathclyde

Glasgow, UK

Ekaterina Komendantskaya

Heriot-Watt University

Edinburgh, UK

Luca Arnaboldi

University of Edinburgh

Edinburgh, UK

Abstract
Modern verification tools frequently rely on compiling high-

level specifications to SMT queries. However, the high-level

specification language is usually more expressive than the

available solvers and therefore some syntactically valid spec-

ifications must be rejected by the tool. In such cases, the

challenge is to provide a comprehensible error message to

the user that relates the original syntactic form of the speci-

fication to the semantic reason it has been rejected.

In this paper we demonstrate how this analysis may be

performed by combining a standard unification-based type-

checker with type classes and automatic generalisation. Con-

cretely, type-checking is used as a constructive procedure

for under-approximating whether a given specification lies

in the subset of problems supported by the solver. Any re-

sulting proof of rejection can be transformed into a detailed

explanation to the user. The approach is compositional and

does not require the user to add extra typing annotations

to their program. We subsequently describe how the type

system may be leveraged to provide a sound and complete

compilation procedure from suitably typed expressions to

SMT queries, which we have verified in Agda.

CCS Concepts: • Software and its engineering → Do-
main specific languages; • Hardware → Theorem prov-
ing and SAT solving.

Keywords: SMT solvers, verification, domain specific lan-

guages, type-checking, compilers, Agda

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

CPP ’23, January 16–17, 2023, Boston, MA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 979-8-4007-0026-2/23/01. . . $15.00

https://doi.org/10.1145/3573105.3575674

ACM Reference Format:
Matthew L. Daggitt, Robert Atkey, Wen Kokke, Ekaterina Komen-

dantskaya, and Luca Arnaboldi. 2023. Compiling Higher-Order

Specifications to SMT Solvers: How to Deal with Rejection Con-

structively. In Proceedings of the 12th ACM SIGPLAN International
Conference on Certified Programs and Proofs (CPP ’23), January 16–
17, 2023, Boston, MA, USA. ACM, New York, NY, USA, 20 pages.

https://doi.org/10.1145/3573105.3575674

1 Introduction
As the performance of SMT solvers and other automatic

theorem provers has improved, they have been applied to a

wide range of domains, including policy verification [Backes

et al. 2018], program synthesis [Seshia and Subramanyan

2018; Solar-Lezama 2008], model-based testing [Kroening

and Tautschnig 2014] and neural network verification [Katz

et al. 2019]. However, manually writing queries for these

solvers is tedious and error-prone, so tools often provide a

higher-level domain-specific language (DSL) which is then

compiled down to an equisatisfiable set of queries.

Such DSLs aim to provide a layer of abstraction between

the user and the solvers, but do not entirely succeed. The

main failure point of the abstraction is that each individual

solver only supports a limited class of problems (known as

“logics” in SMTLib) and that some classes of problems are

more difficult than others. Therefore, an apparently innocu-

ous tweak to a high-level specification may change the class

of problems the compiled queries belong to and consequently

the choice of solver. In turn, this may drastically increase

the time taken to check the specification or even render it

unable to be solved if no suitable solver is available.

We have encountered the latter issue while designing a

DSL for writing specifications for neural networks solvers.

Due to their large size and inherent complexity, neural net-

works require specialised solvers [Katz et al. 2019; Zhang

et al. 2018] which generally only support problems that be-

long to some subset of quantifier-free linear real arithmetic

(QF_LRA). As we made our language more expressive, it

became increasingly easy to write specifications that cannot

be compiled to an equivalent set of queries in QF_LRA.

https://doi.org/10.1145/3573105.3575674
https://doi.org/10.1145/3573105.3575674

CPP ’23, January 16–17, 2023, Boston, MA, USA Matthew L. Daggitt, Robert Atkey, Wen Kokke, Ekaterina Komendantskaya, and Luca Arnaboldi

To illustrate how a user may write such a specification,

consider a higher-order functional DSL for writing specifica-

tions equipped with the quantifiers forall and exists as
first-class constructs in the language. We would like to com-

pile specifications about some function 𝑓 : R𝑛 → R down

to queries for a QF_LRA solver. The exact semantics of 𝑓

is unimportant; it could be an existing piece of C++ code, a

neural network or an uninterpreted function to find a solu-

tion for. The user begins by writing a function that asserts

some value 𝑦 is in the range of the function 𝑓 :

inRange : Real -> Bool
inRange y = exists 𝑥. f 𝑥 == 𝑦

This can then be reused to modularly specify that, for exam-

ple, 0 and 1 are in the range of 𝑓 :

zeroAndOneInRange : Bool
zeroAndOneInRange = inRange 0 and inRange 1

This specification is equisatisfiable with the quantifier-free

query ‘𝑓 𝑎 == 0 ∧ 𝑓 𝑏 == 1’ and which can then be solved by

a QF_LRA solver that can handle 𝑓 appropriately. However,

the user may then use the innocuous inRange definition to

specify that 𝑓 is surjective:

surjective : Bool
surjective = forall 𝑦. inRange 𝑦

Fully expanded, this specification has alternating forall and
exists quantifiers and therefore there is no equisatisfiable

quantifier-free set of queries it can be compiled to.

1.1 Existing approaches
One approach to addressing this issue is to design the syntax

of the DSL so that all expressions in the language belong

to the supported class of problems. For example in Liquid

Haskell [Vazou 2016] and Cryptol [Lewis and Martin 2003],

exists is not a first class construct in the language and

therefore it is syntactically impossible for users to write

non-quantifier-free statements. In particular, it would not be

possible to define inRange in the examples above. While re-

stricting quantifiers in this way is feasible, applying the same

approach to non-linear expressions is significantly more dif-

ficult as multiplication is almost universally a first-class con-

struct in languages. The approach also inhibits modularity,

as functions containing quantifiers (e.g. inRange) cannot
be declared and then reused in multiple places, (e.g. as in

zeroOneInRange). Finally, it is inherently inapplicable when
the DSL is compiled to multiple backends with different capa-

bilities, e.g. a solver and some other non-solver, or multiple

solvers supporting different logics.

An alternative approach is to first normalise the specifica-

tion to remove all functions and then subsequently perform

a simple syntactic check. This approach is adopted by the

Z3 SMTLib frontend [de Moura and Bjørner 2008]. While

this procedure is both sound and complete, normalisation

discards information about the specification the user has

actually written. Therefore when the syntactic check sub-

sequently encounters a problem, it cannot explain why or

where in the source file a problem has occurred. For example,

asking Z3 to solve an SMTLib encoding of surjective with

a QF_LRA solver results in an error saying that the quanti-

fiers are unsupported but cannot provide useful information

to the user about the location of the quantifiers or how they

interact. Although in this case it is easy to spot the problem, it

may not be so easy in a large real-world specification where

the definition of inRange may be far from surjective or

used through a chain of intermediate function calls.

Finally, tools such as F* [Swamy et al. 2016] throw generic

error messages that do not even mention alternating quanti-

fiers. We have collected example messages in Appendix A.

1.2 Our contributions
In this paper, we propose a solution to this problem in the

form of a type-system that can be used to soundly approx-

imate membership of QF_LRA for an expressive specifica-

tion language with higher-order functions. The basic idea

is for the compiler to internally refine the Bool and Real
types into families of types indexed by quantities tracking

precisely how they use quantified variables. For example,

one type might be the type of Booleans which universally

quantify over real numbers which are used linearly. Poly-

morphism over these quantities is retained via a standard

higher-order unification-based type-checker and what we

believe to be a novel combination of Haskell-style type-class

propagation [Wadler and Blott 1989] and Idris-style implicit

generalisation [Brady 2013]. Crucially our approach does

not require the user to add additional typing annotations,

nor for them to understand advanced type system features.

Type-checking can then be used as a constructive decision

procedure for membership, from which a proof of whether

a specification can or cannot be compiled can be extracted.

In the latter case, the proof can then be used to construct a

detailed error message for the user. For example, passing in

the example specification surjective results in the error:

Cannot verify specifications with alternating quantifiers.
In particular:
1. the inner quantifier is the ‘exists’ located at line 2,

columns 12-18
2. which is returned as the output of the call to the function
‘inRange‘ at line 1, columns 24-31

3. which alternates with the outer ‘forall’ quantifier at
line 7, columns 13-19.

When the type-checking procedure succeeds, we are guar-

anteed that the specification can be compiled to a format

suitable for a QF_LRA solver. In Section 4, we constructively

demonstrate this fact by presenting a Normalisation by Eval-

uation (NbE) procedure [Berger and Schwichtenberg 1991]

that accepts the fully elaborated output of our type checker

Compiling Higher-Order Specifications to SMT Solvers: How to Deal with Rejection Constructively CPP ’23, January 16–17, 2023, Boston, MA, USA

and generates a semantically equivalent formula. NbE for

our specification language is non-trivial due to the fact that

our specification language allows mixing of if-then-else and

uninterpreted function applications anywhere in terms. Both

of these need to be extracted from the context in which they

appear and hoisted to the level of Boolean constraints. We ex-

plain our method for accomplishing this lifting via a monad

in Section 4.3.3. The totality, type- and semantic-preservation

properties of our NbE procedure have all been formalised in

the Agda proof assistant [Norell 2008].

Our approach has been incorporated into the DSL of Vehi-

cle [Daggitt et al. 2022], a new tool for writing and checking

neural network specifications. While the paper focuses on

QF_LRA, the technique is modular in the sense that it decides

membership of quantifier-freeness separately from linear-

ity. Therefore, while quantifier-freeness and linearity are

arguably the two most important subsets of SMT logics, we

hypothesise that the technique is more generally applica-

ble to approximating membership of other SMT logics, e.g.

integer difference logics [Kim and Somenzi 2006].

The paper is laid out as follows. Section 2 presents an

example of a higher-order DSL for writing specifications

about functions over vectors. We then discuss the different

classes of expressions tracked by our analysis. Section 3 de-

scribes our type based analysis procedure, and discusses its

advantages and disadvantages compared to other approaches.

Section 4 describes our formally verified normalisation pro-

cedure to SMT queries.

2 User language
Figure 1 shows the grammar of a high-level language for

writing specifications about abstract functions. A specifica-

tion is a sequence of declarations of which there are three

types: type synonyms, abstract functions declarations and

definitions. Expressions containmany of the usual constructs

available in functional languages, as well as sized vector lit-

erals with type-safe indexing and first-class universal and

existential quantifiers. Due to space limitations it does not

include redundant operations such as let-bindings and dis-

junction. Example 2.1 shows how the specification “function

𝑓 is monotonically increasing in its second input” can be

written in the language.

Example 2.1 (Monotonicity specification).

type Input = Vec Real 5

fun f : Input -> Real

equalExceptAt : Index 5 -> Input -> Input -> Bool
equalExceptAt i x y = forall 𝑗. 𝑖 != 𝑗 => 𝑥 ! 𝑗 == 𝑦 ! 𝑗

monotonic : Bool
monotonic = forall 𝑥,𝑦.

equalExceptAt 2 𝑥 𝑦 and 𝑥 ! 2 <= 𝑦 ! 2 => 𝑓 𝑥 <= 𝑓 𝑦

where Vec𝐴 𝑛 is the type of vectors of length 𝑛 containing

elements of type 𝐴 and Index 𝑛 is the type of indices into a

vector of length 𝑛.

A property is defined to be any definition whose type is

Bool, and the goal of the compiler is to compile properties

down to a set of queries for a QF_LRA solver. For example,

the monotonic property might be compiled to the following

satisfaction query:

𝑥0 == 𝑦0 ∧ 𝑥1 == 𝑦1 ∧ 𝑥2 <= 𝑦2 ∧ 𝑥3 == 𝑦3 ∧ 𝑥4 == 𝑦4 ∧
𝑧1 == 𝑓 [𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4] ∧ 𝑧2 == 𝑓 [𝑦0, 𝑦1, 𝑦2, 𝑦3, 𝑦4] ∧
𝑧1 > 𝑧2

where all the variables are implicitly existentially quantified

over. The 𝑥0 . . . 𝑥4 and 𝑦0 . . . 𝑦4 variables represent the ele-

ments of the original quantified vectors 𝑥 and 𝑦 respectively.

This query is satisfiable if and only if the original monotonic
property is false.

The language is equipped with a standard semantics that

we will describe in Section 4. Here, it suffices to note two key

points. Firstly, the language is designed for writing specifica-

tions rather than performing general-purpose computation

and therefore it does not support recursion. Secondly, the

semantics of the declared functions 𝑓 are external to the

specification. In the paper syntax will be written using a

type-writer font, e.g. x == 2, and semantics using mathemati-

cal type-setting, e.g. 𝑥 = 2.

The aim of this paper is to analyse whether a specification

is compatible with a quantifier-free real linear arithmetic

solver (QF_LRA). This is a property of a specification’s se-

mantics rather than syntax, therefore we now classify expres-

sions according to their semantics. For the linearity analysis,

there are three classes of expressions:

1. Constant (𝐶) - the expression’s semantics only in-

volves constants, e.g.

3
2 + 1 ≤ 10

2. Linear (𝐿) - the expression’s semantics uses quantified

variables linearly (in the arithmetic sense), e.g.

∃𝑥 . 0 ≤ 2𝑥 ∧ 3𝑥 ≤ 1

3. Non-linear (𝑁) - the expression’s semantics uses quan-

tified variables non-linearly, e.g.

∃𝑥 . 𝑥3 + 5𝑥2 − 1 >= 𝑥

In the quantifier analysis we identify five classes, which we

will call polarity classes:

1. Unquantified (𝑈) - no quantifiers in the expression’s

semantics, e.g.

1 + 1 ≤ 2
2

2. Existentially quantified (∃) - only existential quan-

tifiers in the expression’s semantics, e.g.

∃𝑥 . 𝑓 (𝑥) ≥ 7

CPP ’23, January 16–17, 2023, Boston, MA, USA Matthew L. Daggitt, Robert Atkey, Wen Kokke, Ekaterina Komendantskaya, and Luca Arnaboldi

⟨decl⟩ ::= type ⟨tId ⟩ = ⟨type ⟩
| fun ⟨id ⟩ : ⟨type ⟩
| ⟨id ⟩ : ⟨type ⟩

⟨id ⟩ [⟨binder ⟩] = ⟨expr ⟩

⟨type⟩ ::= ⟨type ⟩ -> ⟨type ⟩
| ⟨tId ⟩
| Vec ⟨type ⟩ 𝑛
| Index 𝑛
| Bool | Real

⟨binder⟩ ::= ⟨id ⟩ | (⟨id ⟩ : ⟨type ⟩)

⟨expr⟩ ::= ⟨expr ⟩ ⟨expr ⟩
| lam ⟨binder ⟩.⟨expr ⟩
| forall ⟨binder ⟩. ⟨expr ⟩
| exists ⟨binder ⟩. ⟨expr ⟩
| ⟨id ⟩
| ⟨expr ⟩ ⟨bop ⟩ ⟨expr ⟩
| if ⟨expr ⟩ then ⟨expr ⟩ else ⟨expr ⟩
| not ⟨expr ⟩
| 𝑖 ∈ N | 𝑏 ∈ B | 𝑟 ∈ R
| [⟨expr ⟩, ..., ⟨expr ⟩]

⟨bop⟩ ::= == | != | <= | >= | < | > | and | => | + | * | !

Figure 1. The grammar for a high-level user language for writing specifications.

3. Universally quantified (∀) - only universal quanti-

fiers in the expression’s semantics, e.g.

∀𝑥 . 𝑓 (𝑥) ≥ 7

4. Parallel quantifiers (𝑃) - both universal and existen-

tial quantifiers present in the expression’s semantics,

but their scopes never intersect, e.g.

(∀𝑥 . 𝑓 (𝑥) >= 0) ∧ (∃𝑥 . 𝑓 (𝑥) ≥ 5)

5. Alternating quantifiers (𝐴) - both universal and ex-

istential quantifiers present in the expression’s seman-

tics with a non-empty intersection of their scopes, e.g.

∀𝑦. ∃𝑥 . 𝑓 (𝑥) = 𝑦

Properties whose expressions are in the𝑈 , ∃, ∀ and 𝑃 classes

may all be checked with a QF_LRA solver. Expressions in ∃
are equisatisfiable with a QF_LRA expression. Expressions

in ∀may be negated to obtain an expression in ∃, and then

the desired result is the negation of the output of the solver.

Expressions in 𝑃 may be split into multiple disjoint queries

each of which are either in ∃ or ∀ and may be checked

individually.

However, detecting which class a given specification be-

longs to is not straightforward. For example, negating a

Boolean expression will flip the polarity of the quantifiers

within the semantics. Therefore although the following only

contains forall quantifiers syntactically, semantically it has

alternating quantifiers and therefore is a member of the 𝐴

class:

forall 𝑦. not forall 𝑥. 𝑓 𝑥 != 𝑦

Furthermore, the analysis needs to distinguish between quan-

tifiers over variables with finite and infinite domains. For

example, despite:

forall 𝑥. exists (i : Index 5). 𝑓 𝑥 ! 𝑖 <= 1

containing both a forall and an exists syntactically, it

belongs to the ∀ class rather than the 𝐴 class because the

exists quantifies over the Index 5 type and therefore can

be expanded out into five disjunctions.

In general, even for linearity, a syntactic check can never

be sufficient as shown by the following example function:

lam (x : Real).𝑥 * 𝑥 >= 0

whose output is constant if the input is constant and other-

wise is non-linear.

3 QF_LRA analysis
To facilitate the analysis, we now describe an intermediate

representation (IR) for the language just defined and an as-

sociated type system. The latter is capable of soundly under-

approximating membership of QF_LRA, and in the case of

a negative result constructing a proof of non-membership

which can be turned into readable diagnostic information

for the user.

3.1 Intermediate representation
The grammar for the IR is shown in Figure 2. At the expres-

sion level, it has exactly the same expressive power as the

high-level language in Section 2.

However, at the type-level it is significantly more complex.

As briefly discussed in Section 1.2, our proposed analysis

tracks the linearity and polarity of expressions by turning

the Real and Bool into type families indexed by the linearity

classes (𝐶, 𝐿, 𝑁) and polarities classes (𝑈 ,∀, ∃, 𝑃, 𝐴) identified
in Section 2. The Real type is indexed by the linearity an-

notations and the Bool type is indexed by both linearity

annotations and polarity annotations. For example Real 𝐿 is

the type of real expressions that are linear in its free variables,

and Bool ∀ 𝑁 is the type of Boolean expression that contain

only forall quantifiers, at least one of whose quantified

variable is used non-linearly.

This naturally leads to a type system that is a variant of

System F
1
[Girard 1971; Pierce 2002], where types themselves

have types, which are referred to as kinds. There are four
base Kinds in our system: Type, Linearity, Polarity and

1
In practice, a dependently-typed system might provide a simpler meta-

theory, but we have chosen System F as it is the minimal setting that gives

us sufficient expressive power.

Compiling Higher-Order Specifications to SMT Solvers: How to Deal with Rejection Constructively CPP ’23, January 16–17, 2023, Boston, MA, USA

⟨decl⟩ ::=
| ⟨tId ⟩ : ⟨kind ⟩

⟨tId ⟩ = ⟨type ⟩
| fun ⟨id ⟩ : ⟨type ⟩
| ⟨id ⟩ : ⟨type ⟩

⟨id ⟩ = ⟨expr ⟩

⟨kind⟩ ::= ⟨kind ⟩ -> ⟨kind ⟩
| Type
| Linearity
| Polarity
| Size

⟨type⟩ ::= ∀⟨tBinder ⟩.⟨type ⟩
| tlam ⟨tBinder ⟩.⟨type ⟩
| ⟨type ⟩ -> ⟨type ⟩
| {{⟨type ⟩}} -> ⟨type ⟩
| ⟨type ⟩ ⟨type ⟩
| ⟨tId ⟩
| ⟨builtinType ⟩
| ⟨typeClassConstraint ⟩
| ⟨polarityConstraint ⟩
| ⟨linearityConstraint ⟩
| ⟨linearity ⟩
| ⟨polarity ⟩
| n ∈ N
| ?𝑚

⟨tBinder⟩ ::= { ⟨tId ⟩ : ⟨kind ⟩ }

⟨typeClassConstraint⟩ ::=
| HasEq
| HasOrd
| HasForall
| HasExists
| HasIndexLiteral n
| Subtypes

⟨linearity⟩ ::= 𝐶 | 𝐿 | 𝑁

⟨linearityConstraint⟩ ::=
| MaxLin
| MulLin
| InputLin ⟨id ⟩
| OutputLin ⟨id ⟩

⟨polarity⟩ ::= 𝑈 | ∀ | ∃ | 𝑃 | 𝐴

⟨polarityConstraint⟩ ::=
| MaxPol
| NegPol
| ImpliesPol
| ForallPol
| ExistsPol
| InputPol ⟨id ⟩
| OutputPol ⟨id ⟩

⟨builtinType⟩ ::= Vec
| Index
| Real
| Bool

⟨expr⟩ ::=
| ⟨expr ⟩ ⟨arg ⟩
| lam ⟨binder ⟩.⟨expr ⟩
| ⟨id ⟩
| ⟨builtin ⟩
| 𝑏 ∈ B | 𝑖 ∈ N | 𝑟 ∈ R

⟨binder⟩ ::= (⟨id ⟩ : ⟨type ⟩)

⟨arg⟩ ::
| ⟨expr ⟩
| { ⟨type ⟩ }

⟨builtin⟩ ::
| == | != | <= | >= | < | >
| and | not | => | forall | exists
| + | * | ! | ite

Syntactic sugar

∀{𝑙}.𝑒 ≡ ∀{𝑙 : Linearity}.𝑒
∀{𝑝}.𝑒 ≡ ∀{𝑝 : Polarity}.𝑒
∀{𝜏}.𝑒 ≡ ∀{𝜏 : Type}.𝑒

∀{𝑥𝑦}.𝑒 ≡ ∀{𝑥}.∀{𝑦}.𝑒

Figure 2. Intermediate representation for the language in Figure 1.

Size, and new Kinds can be constructed from these using

the function arrow. For example, the Bool type has kind:

Linearity -> Polarity -> Type

Types can also contain type-level variables. A new type-level

variable 𝜏 which has kind 𝑘 can be abstracted over using

the syntax ‘∀{𝜏 : 𝑘}....’, commonly known as a pi-binder.
As discussed in Section 1, one of our aims is to avoid the

user having to write additional typing information. Instead

missing types will be represented asmeta-variables and writ-
ten as ?𝑚 where 𝑚 is a unique identifying number. Meta-

variables are inserted by the elaborator and type-checker,

and may represent type variables of any Kind.
In addition to the standard function type, 𝜏1 -> 𝜏2, the IR

also has the instance function type, {{𝜏1}} -> 𝜏2. This type

enforces that the constraint 𝜏1 needs to be resolved in order

to obtain something of type 𝜏2. There are three classes of

constraints in our system. The first is a set of type-classes

that allow operators in the user language to be overloaded

for multiple different types. For example, a HasEq constraint

will be generated whenever an equality comparison opera-

tor is encountered, to enforce that the arguments are of a

comparable type. The second and third groups of constraints

exist to encode the relationships between linearity and polar-

ity meta-variables. These will be generated by expressions

in the user language that alter the polarity or linearity of

an expression (e.g. a MulLin constraint is generated by a

multiplication) or an event we would like to appear in the er-

ror messages (e.g. a InputLin constraint is generated when

something is used as an input to a user-defined function).

3.2 Elaboration
Elaboration from the user language to the intermediate lan-

guage is straightforward. Expression binders with a missing

type get assigned a fresh meta-variable for their type. The

builtin infix operations (+, *, if etc.) are turned into prefix op-
erators. The quantifiers are changed from binding variables

directly to builtins that take a lambda as their only argu-

ment, e.g. forall 𝑥. 𝑒 is elaborated to forall (lam 𝑥 . 𝑒).
Types are elaborated directly, and, with the exception of

meta-variables, none of the additional type-level constructs

introduced in the IR get added to the type signatures during

elaboration.

CPP ’23, January 16–17, 2023, Boston, MA, USA Matthew L. Daggitt, Robert Atkey, Wen Kokke, Ekaterina Komendantskaya, and Luca Arnaboldi

3.3 Type checking
Type-checking of a specification proceeds on a declaration-

by-declaration basis. For each declaration:

1. Fresh meta-variables for missing linearity and polarity

type indices are inserted.

2. A standard bidirectional type checking/inference pass

is made over the declaration type and body, generating

new meta-variables and constraints.

3. An attempt is made to solve the meta-variables and

constraints generated in the previous step.

4. Constraints that track the application of user functions

are introduced to the set of unsolved constraints.

5. The declaration is generalised over by prepending un-

solved meta-variables and constraints to the declara-

tion’s type signature.

We will now describe these steps in more detail.

3.3.1 Inserting linearity and polarity meta-variables.
By design, the user is unaware of the linearity and polar-

ity annotations. Consequently after elaboration, the user’s

program will be ill-typed. Therefore the first phase of type-

checking is to traverse all the types in the current declara-

tion, inserting meta-variables into the indexed types. The

two main indexed types are Bool and Real, however user-
defined type synonyms that make use of Bool and Real will

also be indexed by polarity and linearity annotations.

For example, consider the first two lines of the monotonic-
ity specification in Example 2.1:

type Input = Vec Real 5

fun f : Input -> Real

Assume that the type-synonym Input has already been type-
checked and generalised over to obtain:

Input : ∀{𝑖 : Linearity}.Type
Input = tlam {𝑙 : Linearity}.Vec (Real 𝑙) 5

and that we are type-checking the declaration fun f. Then
inserting fresh meta-variables ?0 and ?1 in 𝑓 for the missing

linearity types results in:

fun 𝑓 : Input ?0 -> Real ?1

3.3.2 Bidirectional type-checking. A second pass is then

made over the declaration, using a bidirectional type-checking

algorithm [Coquand 1996].We follow the lead of Agda [Norell

2008] and Idris [Brady 2013] by adapting it to insert a fresh

meta-variablewherever a pi-binder is encountered, andwher-

ever we find an instance argument we add the constraint

contained within it to the set of constraints. The pi-binders

can therefore be thought of as themechanism for introducing

new unknown types and the constraints encode the relation-

ship between them, and hence provide information for how

they should be solved. Note that one of the strengths of

our analysis is that only the inference typing rules for the

builtins and literals are non-standard and the core bidirec-

tional algorithm remains unaltered. Correspondingly, we

don’t reproduce the full algorithm here.

Figure 3 shows the inference typing rules for the type and

expression builtins. Real and Bool are now indexed families

of types. The Vec and Index types are typed as expected.

Every builtin operation, with the exception of the lookup

operation, has a constraint associated with it, and can be

divided into two categories. The first are builtins that don’t

need to be overloaded and therefore the polarity and linear-

ity constraints appear directly in their type. For example, +
takes two Reals of linearity 𝑙1 and 𝑙2 and returns a third Real
with linearity 𝑙3, assuming that the constraint MaxLin 𝑙1 𝑙2 𝑙3
is satisfied (i.e. 𝑙3 is the maximum of 𝑙1 and 𝑙2). The second

are builtins that are overloaded, in which case their type-

class constraints will first resolve the type, and only then

add linearity and polarity constraints if required (see Sec-

tion 3.3.3). For example forall generates the HasForall
type-class constraint.

The typing of literals are shown in Figure 4. Real num-

ber literals are given the constant linearity annotation (𝐶),

and Boolean literals are given constant linearity (𝐶) and un-

quantified polarity (𝑈) annotations. Index literals require a

constraint to enforce that its value is smaller than the size of

the resulting type. The most interesting rule case is vector

literals. Although the types of the elements of a vector need

to be homogeneous in the high-level language, in the IR they

may be heterogeneous. For example, the first component

may be a Real 𝐿, and the second a Real 𝐶 . This problem
is solved by encoding an n-ary subtyping relation via the

Subtypes constraint.

3.3.3 Constraint solving. The next step is to try to solve

the set of constraints generated in the bidirectional phase.

Each constraint is tried in turn, and is either a) returned to

the set of constraints if it is currently blocked by an unsolved

meta variable, b) removed from the set of constraints if it can

be solved, the process of which may generate solutions for

meta-variables and new (smaller) constraints, or c) marked

as failed if it is provably unsolvable (in which case type-

checking itself will fail). There are three different types of

constraints that can be generated.

Unification constraints. Unification constraints are of

the form 𝜏1 ∼ 𝜏2 and assert that types 𝜏1 and 𝜏2 are equal.

They can be generated both by the bidirectional pass and

when solving type-class and polarity/linearity constraints.

They are solved using a standard pattern unification algo-

rithm, which may generate further unification constraints

involving strictly syntactically smaller terms than the orig-

inal two terms. For more details of the algorithm see the

presentation by Nipkow [1993].

Type-class constraints. Type-class constraints are used
to resolve overloaded operators. Each type-class constraint

Compiling Higher-Order Specifications to SMT Solvers: How to Deal with Rejection Constructively CPP ’23, January 16–17, 2023, Boston, MA, USA

Bool : Linearity -> Polarity -> Type Real : Linearity -> Type

Vec : Type -> Size -> Type Index : Size -> Type ! : ∀{𝜏𝑛}.Vec 𝜏 𝑛 -> Index 𝑛 -> 𝜏

+ : ∀{𝑙1𝑙2𝑙3}.{{MaxLin 𝑙1 𝑙2 𝑙3}} -> Real 𝑙1 -> Real 𝑙2 -> Real 𝑙3

* : ∀{𝑙1𝑙2𝑙3}.{{MulLin 𝑙1 𝑙2 𝑙3}} -> Real 𝑙1 -> Real 𝑙2 -> Real 𝑙3

and : ∀{𝑙1𝑙2𝑙3𝑝1𝑝2𝑝3}.{{MaxLin 𝑙1 𝑙2 𝑙3}} -> {{MaxPol 𝑝1 𝑝2 𝑝3}} -> Bool 𝑙1 𝑝1 -> Bool 𝑙2 𝑝2 -> Bool 𝑙3 𝑝3

not : ∀{𝑙𝑝1𝑝2}.{{NegPol 𝑝1 𝑝2}} -> Bool 𝑙 𝑝1 -> Bool 𝑙 𝑝2

=> : ∀{𝑙1𝑙2𝑙3𝑝1𝑝2𝑝3}.{{MaxLin 𝑙1 𝑙2 𝑙3}} -> {{ImpliesPol 𝑝1 𝑝2 𝑝3}} -> Bool 𝑙1 𝑝1 -> Bool 𝑙2 𝑝2 -> Bool 𝑙3 𝑝3

==, != : ∀{𝜏1𝜏2𝜏3}.{{HasEq 𝜏1 𝜏2 𝜏3}} -> 𝜏1 -> 𝜏2 -> 𝜏3

<=, >=, <, > : ∀{𝜏1𝜏2𝜏3}.{{HasOrd 𝜏1 𝜏2 𝜏3}} -> 𝜏1 -> 𝜏2 -> 𝜏3

forall : ∀{𝜏1𝜏2}.{{HasForall 𝜏1 𝜏2}} -> 𝜏1 -> 𝜏2 exists : ∀{𝜏1𝜏2}.{{HasExists 𝜏1 𝜏2}} -> 𝜏1 -> 𝜏2

ite : ∀{𝑙𝑝𝜏1𝜏2𝜏3}.{{Subtypes 𝜏3 [𝜏1, 𝜏2]}} -> Bool 𝐿 𝑈 -> 𝜏1 -> 𝜏2 -> 𝜏3

Figure 3. Type system for the builtin constants in the intermediate representation.

(index)

𝑖 ∈ N
Γ ⊢ 𝑖 : ∀{𝜏}.{{HasIndexLiteral 𝑖 𝜏}} -> 𝜏

(real)

𝑟 ∈ R
Γ ⊢ 𝑟 : Real𝐶

(vecLit)

Γ ⊢ 𝑒1 : 𝜏1 . . . Γ ⊢ 𝑒𝑛 : 𝜏𝑛

Γ ⊢ [𝑒1 . . . 𝑒𝑛] : ∀{𝜏}.{{Subtypes 𝜏 [𝜏1, . . . , 𝜏𝑛]}} -> Vec 𝜏 𝑛
(bool)

𝑏 ∈ B
Γ ⊢ 𝑏 : Bool𝐶 𝑈

Figure 4. Type system for the literal expressions in the intermediate representation.

(hasForallReal)

𝑙1 ∼ 𝐿 𝑙2, 𝑝1, 𝑝2 = ?+ 𝜏1 ∼ Bool 𝑙2 𝑝1 𝜏2 ∼ Bool 𝑙2 𝑝2 ForallPol 𝑝1 𝑝2

HasForall (Real 𝑙1 -> 𝜏1) 𝜏2

(hasForallVec)

HasForall (𝜏1 -> 𝜏2) 𝜏3
HasForall (Vec 𝑛 𝜏1 -> 𝜏2) 𝜏3

(hasForallIndex)

𝑙, 𝑝 = ?+ 𝜏1 ∼ Bool 𝑙 𝑝 𝜏2 ∼ Bool 𝑙 𝑝

HasForall (Index 𝑛 -> 𝜏1) 𝜏2

Figure 5. Rules for solving the HasForall type-class constraint

has a set of rules, which are tried in order. For example, Fig-

ure 5 shows the rules for the HasForall type-class. These

rules allows users to quantify over Real, Index and arbitrar-
ily nested Vecs of Real and Index.
Informally, the first rule hasForallReal can be read as fol-

lows: when quantifying over a Real with linearity 𝑙1 then

i) unify 𝑙1 with 𝐿 as any quantified variable is linear with re-

spect to itself, ii) generate one new linearity meta-variable 𝑙2
and two new polarity meta-variables 𝑝1, 𝑝2, iii) unify both the

output type of the function and the output type of the quan-

tifier with Bool types of linearity 𝑙2 and polarities 𝑝1 and 𝑝2,

thereby ensuring that linearity is preserved iv) constrain 𝑝1
and 𝑝2 to be related by the ForallPol constraint.

CPP ’23, January 16–17, 2023, Boston, MA, USA Matthew L. Daggitt, Robert Atkey, Wen Kokke, Ekaterina Komendantskaya, and Luca Arnaboldi

MaxLin 𝑙1 𝑙2 𝑙3

Derived as the

least upper

bound (⊔)
operator from

the lattice to

the right.

𝐶 (Constant)

𝐿 (Linear)

𝑁 (NonLinear)

MulLin 𝑙1 𝑙2 𝑙3

𝑙1 𝑙2 → 𝑙3

𝐶 𝑙 → 𝑙

𝑙 𝐶 → 𝑙

𝐿 𝐿 → 𝑁

𝑁 𝑙 → 𝑁

𝑙 𝑁 → 𝑁

MaxPol𝑝1𝑝2𝑝3

Derived as the

least upper

bound (⊔)
operator from

the lattice to

the right.

𝑈 (Unquantified)

∀ (Forall) ∃ (Exists)

𝑃 (Parallel)

𝐴 (Alternating)

NegPol 𝑝1 𝑝2

𝑝1 → 𝑝2

𝑈 → 𝑈

∃ → ∀
∀ → ∃
𝑃 → 𝑃

𝐴 → 𝐴

ImpliesPol 𝑝1 𝑝2 𝑝3

NegPol 𝑝1 𝑝
′
1

∧
MaxPol 𝑝′

1
𝑝2 𝑝3

ExistsPol 𝑝1 𝑝2

𝑝1 → 𝑝2

𝑈 → ∃
∃ → ∃
∀ → 𝐴

𝑃 → 𝐴

𝐴 → 𝐴

ForallPol 𝑝1 𝑝2

𝑝1 → 𝑝2

𝑈 → ∀
∃ → 𝐴

∀ → ∀
𝑃 → 𝐴

𝐴 → 𝐴

Figure 6. Solutions for linearity and polarity constraints which alter their arguments.

Note that the use of type-class constraints gives us the

flexibility to distinguish between finite and infinite quanti-

fiers, as discussed at the end of Section 2. In particular, when

solving the same constraint for the Index type the polarity
is preserved without change. The rule for Vec ensures that
this behaviour is inherited correctly depending on the vec-

tor’s element type. The full set of rules for solving type-class

constraints can be found in Appendix B.

Linearity/polarity constraints. The third type of con-

straints are those that operate directly on the linearity and

polarity types. Polarity and linearity types flow upwards

through the AST, from the constants and variables at its

leaves, through the nodes of interest. Unlike type-class con-

straints, linearity and polarity constraints encode total func-

tions, i.e. the last type argument in each constraint is de-

terministically derivable from the previous type arguments.

Therefore they can never fail, although they may still tem-

porarily block on unsolved meta-variables.

The solutions for the linearity and polarity constraints

which alter their arguments are shown in Figure 6. For exam-

ple if expression 𝑒1 has polarity ∃ and 𝑒2 has polarity ∀ then

‘𝑒1 and 𝑒2’ would generate the MaxPol constraint, and would

therefore be assigned polarity 𝑃 . Implication is an interest-

ing case, as ImpliesPol can be defined in terms of NegPol
and MaxPol. However, we keep ImpliesPol as a separate

constraint so that we can distinguish between a quantifier

that was negated by a ‘not’ and one that was negated by

being on the LHS of an ‘=>’ in the error messages.

3.3.4 Function application constraint insertion. An
observant reader may have noted that so far the constraints

InputPol, OutputPol, InputLin, OutputLin in the gram-

mar in Figure 2 have neither shown up in the types in Fig-

ures 3 & 4 nor in the constraint solutions in Figure 6. Their

purpose is purely to track calls to user definitions so that the

calls will show up in the error messages (e.g. line 2. in the

example error message in Section 1.2). They therefore act as

the identity function on linearity and polarity types as they

have been presented so far.

How do they work then? Our approach, as presented so

far, indexes every Bool with a linearity and polarity type.

However, in Section 1.2 we promised constructive proofs.

Therefore, in the same way that a compiler annotates nodes

in the abstract syntax tree of an expression with their prove-

nance in the source file, we annotate the linearity and po-

larity types with a proof of how that value was constructed.

The grammar for these proofs terms is shown in Figure 7.

For example, the non-linear type 𝑁 has two pieces of prove-

nance information attached, one each for the left and right

sides of the non-linear multiplication respectively.

The constraints added during the bidirectional pass in-

herit the provenance of the operation that generated them.

Therefore when solving a constraint, the name and prove-

nance of the symbol that generated the constraint is avail-

able to be added to the constructed polarity or linearity type.

When an InputPol/OutputPol/InputLin /OutputLin con-
straint is solved it leaves the actual linearity or polarity type

untouched but appends a FunctionInput/FunctionOutput
node to the provenance information associated with it.

The remaining issue is how to ensure these constraints

are generated in the right place. In particular they need to

be generated when the user function is applied, not when

it is defined. The solution is to have them inserted into the

Compiling Higher-Order Specifications to SMT Solvers: How to Deal with Rejection Constructively CPP ’23, January 16–17, 2023, Boston, MA, USA

⟨prov⟩ ::= location in source file

⟨linearity⟩ ::= 𝐶

| 𝐿⟨linearityProv ⟩
| 𝑁 ⟨linearityProv ⟩ ⟨linearityProv ⟩

⟨linearityProv⟩ ::=
| QuantifiedVariable ⟨prov ⟩ ⟨id ⟩
| FunctionInput ⟨prov ⟩ ⟨linearityProv ⟩
| FunctionOutput ⟨prov ⟩ ⟨linearityProv ⟩

⟨polarity⟩ ::= 𝑈

| ∀ ⟨polarityProv ⟩
| ∃ ⟨polarityProv ⟩
| 𝑃 ⟨polarityProv ⟩ ⟨polarityProv ⟩
| 𝐴 ⟨prov ⟩ ⟨polarityProv ⟩

⟨polarityProv⟩ ::=
| Quantifier ⟨prov ⟩ ⟨id ⟩
| Negation ⟨prov ⟩ ⟨polarityProv ⟩
| FunctionInput ⟨prov ⟩ ⟨polarityProv ⟩
| FunctionOutput ⟨prov ⟩ ⟨polarityProv ⟩

Figure 7. Grammar for the internal proof structure of the linearity and polarity constraints. This is a refinement of the

⟨linearity ⟩ and ⟨polarity ⟩ classes in Figure 2.

type signature of user definitions after constraint solving.
Concretely, we again iterate through all the unique polarity

and linearity values in the input and output types of the

type signature. For every value, we replace it with a fresh

meta-variable and then link the old value and the new meta-

variable by the appropriate constraint. For example, suppose

we have the following type after constraint solving:

𝑓 : Real 𝐿 -> Bool 𝐿 ∀

then after this operation we will have:

𝑓 : Real ?0 -> Bool ?1 ?2

and the following additional three constraints:

InputLin 𝑓 𝐿 ?0 OutputLin 𝑓 𝐿 ?1 OutputPol 𝑓 ∀ ?2

3.3.5 Generalisation. The final generalisation phase takes
all the unsolved meta-variables and constraints and prepends

them to the type signature. To explore why some constraints

and meta-variables may be unsolved (excluding those intro-

duced for input and output constraints in the previous step)

consider the following (not very useful) definition:

g : Bool -> Bool
g = not

At the end of the constraint solving phase, the type-checker

will be in the following state:

g : Bool ?0 ?1 -> Bool ?0 ?2 Constraints

g x = not 𝑥 NegPol ?1 ?2

None of the meta-variables nor the NegPol constraint itself

can be solved as the type-checker doesn’t know what the

input linearity and polarity annotations are. In order to ob-

tain the most general expression, we follow the constraint

propagation approach inspired by the implicit generalisa-

tion feature of Idris [Brady 2013]. First of all any unsolved

constraints are appended to the front of the type:

g : {{NegPol ?1 ?2}} -> Bool ?0 ?1 -> Bool ?0 ?2
g x = not 𝑥

Next we replace each unsolved meta with a new universally

quantified type-variable:

g : ∀{𝑙𝑝1𝑝2}.
{{NegPol 𝑝1 𝑝2}} -> Bool 𝑙 𝑝1 -> Bool 𝑙 𝑝2

g x = not 𝑥

to result in the final function. It should be no surprise that in

this case we have re-obtained the original type of not from

Section 3.3.2.

Of course, in the above example we have been ignoring the

function input and output constraints added in the previous

phase, so the true final type is:

g : ∀{𝑙1 𝑙2 𝑙3 𝑝1 𝑝2 𝑝3 𝑝4}.
{{InputLin 𝑔 𝑙1 𝑙2}} -> {{InputPol 𝑔 𝑝1 𝑝2}} ->
{{OutputLin 𝑔 𝑙2 𝑙3}} -> {{OutputPol 𝑔 𝑝3 𝑝4}} ->
{{NegPol 𝑝2 𝑝3}} -> Bool 𝑙2 𝑝2 -> Bool 𝑙2 𝑝3

g x = not 𝑥

3.4 Worked example
To illustrate all five stages of type-checking, we take the

equalExceptAt declaration from Example 2.1:

equalExceptAt : Index 5 -> Input -> Input -> Bool
equalExceptAt i x y = forall 𝑗. 𝑖 != 𝑗 => 𝑥 ! 𝑗 == 𝑦 ! 𝑗

Note that for clarity, we use the high-level syntax rather

than the elaborated intermediate representation. Under the

assumption that the type-synonym Input has already been

generalised as described in Section 3.3.1, then the first step is

to insert meta-variables for the missing linearity and polarity

annotations in the user’s types as follows:

equalExceptAt : Index 5 -> Input ?0 ->
Input ?1 -> Bool ?2 ?3

equalExceptAt i x y = forall 𝑗. 𝑖 != 𝑗 => 𝑥 ! 𝑗 == 𝑦 ! 𝑗

In this case, the function body is not modified at this stage,

but if it had contained user supplied type annotations, e.g., in

binders, then these would also have had fresh meta-variables

inserted.

CPP ’23, January 16–17, 2023, Boston, MA, USA Matthew L. Daggitt, Robert Atkey, Wen Kokke, Ekaterina Komendantskaya, and Luca Arnaboldi

The second step is the bidirectional type-checking pass.

The types that are assigned to the subterms of interest during

this phase are as follows:

1 2 3 4

forall 𝑗. 𝑖 != 𝑗 => 𝑥 ! 𝑗 == 𝑦 ! 𝑗forall 𝑗. 𝑖 != 𝑗 => 𝑥 ! 𝑗 == 𝑦 ! 𝑗︸︷︷︸
Bool ?6 ?8

︸︷︷︸
Real ?0

︸︷︷︸
Real ?1︸ ︷︷ ︸

Bool ?7 ?9︸ ︷︷ ︸
Bool ?4 ?5︸ ︷︷ ︸

Bool ?4 ?5

During the bidirectional pass, there are four operationswhich

generate constraints. These constraints are then solved in

the third stage of type-checking as follows:

2 HasEq (Index 5) (Index 5) (Bool ?6 ?8)

?6 ∼ 𝐶 ?8 ∼ 𝑈

4 HasEq (Real ?0) (Real ?1) (Bool ?7 ?9)

MaxLin ?0 ?1 ?7 ?9 ∼ 𝑈

3 MaxLin ?6 ?7 ?4 ImpliesPol ?8 ?9 ?5

?5 ∼ 𝑈

1 HasForall (Index 5 -> Bool ?4 ?5) (Bool ?2 ?3)

?4 ∼ ?2 ?5 ∼ ?3

At the end of this stage, the following meta-variables and

constraints remain unsolved:

Meta-variables : {?0, ?1, ?4, ?7}
Constraints : {MaxLin ?0 ?1 ?7, MaxLin𝐶 ?7 ?2}
Type : Index 5 -> Input ?0 ->

Input ?1 -> Bool ?2𝑈

The polarity of the output can be resolved to𝑈 , as there are

no quantifiers with infinite domains. However, the linearity

of the output, ?2, can’t be directly solved for because the

linearity of the inputs ?0 and ?1 are unknown. The unsolved
constraints encode how these three unknowns are related.

Note that if we added an extra rule that encodes the fact that

𝐶 is the bottom element of the total order, we could also get

MaxLin𝐶 ?7?2 to reduce to the constraint ?7 ∼ ?2. However,
this optimisation is unnecessary for the correctness of the

algorithm.

In the fourth stage of type-checking, we generate fresh

meta-variables for each outstanding polarity and linearity

meta-variable in the type, and link them to the prior unsolved

meta-variables via additional function input and output con-

straints. Concretely fresh meta-variables ?10, ?11, ?12 are

introduced for ?0, ?1, ?2 respectively:

Meta-variables : {?0, ?1, ?2, ?7, ?10, ?11, ?12}
Constraints : {MaxLin ?0 ?1 ?7, MaxLin𝐶 ?7 ?2

InputLin equalExceptAt ?10 ?0
InputLin equalExceptAt ?11 ?1
OutputLin equalExceptAt ?2 ?12}

Type : Index 5 -> Input ?10 ->
Input ?11 -> Bool ?12𝑈

Finally, in the fifth stage, the final type of the declaration is

obtained by generalising over all the unsolved constraints

and meta-variables:

equalExceptAt : ∀{𝑙1 𝑙2 𝑙3 𝑙3 𝑙4 𝑙5 𝑙6 𝑙7}.
{{InputLin equalExceptAt 𝑙5 𝑙1}} ->
{{InputLin equalExceptAt 𝑙6 𝑙2}} ->
{{OutputLin equalExceptAt 𝑙3 𝑙7}} ->
{{MaxLin 𝑙1 𝑙2 𝑙4}} -> {{MaxLin𝐶 𝑙4 𝑙3}} ->
Index 5 -> Input 𝑙5 ->
Input 𝑙6 -> Bool 𝑙7 𝑈

equalExceptAt i x y = forall 𝑗. 𝑖 != 𝑗 => 𝑥 ! 𝑗 == 𝑦 ! 𝑗

Although this type looks scary, once the function is applied

and values are assigned to 𝑙1 and 𝑙2 then all the constraints

unravel to compute an output linearity for 𝑙7. For example if

𝑙1 = 𝐶 and 𝑙2 = 𝐿 then 𝑙7 = 𝐿 as expected.

3.5 Using the analysis
Once the entire program has been type-checked then the

types can be used to decide whether or not a specification is

compilable to QF_LRA. In particular, any property with the

type Bool 𝑙 𝑝 where 𝑙 ≠ 𝑁 and 𝑝 ≠ 𝐴 may be compiled. In

Section 4 we will show that this is sound. On the other-hand

if 𝑙 = 𝑁 or 𝑝 = 𝐴 then the constructed provenance attached

to the 𝑁 or 𝐴 types, as described in Section 3.3.4, may be

used to construct a suitable error message for the user.

However, as with any type-system that seeks to analyse

semantic properties of a program, the analysis is inherently

incomplete. For example, the following will be labelled as

non-linear even though the actual result is constant:

forall 𝑥. [𝑥 * 𝑥, 0] ! 1 <= 1
Appendix C contains a more complete list of the sources of

incompleteness.

One consequence of the incompleteness is that if the anal-

ysis is used before normalisation then there exist specifica-

tions that belong to QF_LRA that our analysis will incorrectly

identify as not belonging to it. There are two different philo-

sophical approaches to this. The first, hard-line, approach is

that users should not be writing such specifications. They

are inherently fragile, and as our language is strictly more

expressive than the language of the underlying solver, such

a specification can always be rewritten to a form such that

the analysis succeeds.

Compiling Higher-Order Specifications to SMT Solvers: How to Deal with Rejection Constructively CPP ’23, January 16–17, 2023, Boston, MA, USA

The second, more forgiving, approach is to use the analysis

as a diagnostic procedure and only perform it on the original

specification after normalisation has encountered a problem.

This means that no valid specifications will be rejected, but at

the cost that the error messages will sometimes be inaccurate.

3.6 A possible alternative approach
In Section 1.1, we mentioned how Z3 and other tools detect

such linearity and polarity problems by first normalising

the specification. The main advantage of the normalisation

approach is that, unlike ours, it is complete. However, as

discussed in Section 1.1, it discards much of the structure

present in the user specification, without which it is impos-

sible to recreate useful error messages.

One obvious modification that would allow it to generate

useful error messages, while retaining completeness, would

be to augment each node in the normalised AST with the

history of how the nodewas generated. This is roughly equiv-

alent to dynamically computing the proof term in Figure 7

that our approach computes statically. When a problem was

encountered, this data could then be used to reconstruct a

useful error message.

However, there we argue there are still two main draw-

backs to this approach. Firstly, storing the computation his-

tory for each node would have a memory requirement that

would be at least linear in the length of the execution path.

We hypothesise that this would be prohibitive for very large

specifications with significant amounts of intermediate com-

putation. In contrast, our type-based approaches’ memory

requirements are proportional to the size of the syntax of

the user’s program rather than the length of the execution

paths.

Secondly, the normalisation approach is not compositional,

i.e. it requires thewhole program to be available to be run and

normalised. Therefore, it cannot be used to identify linearity

and polarity problems in incomplete programs or external

libraries. In contrast, type-based algorithms are inherently

compositional. Therefore, our analysis can be run on incom-

plete programs and external libraries can be checked for

problems independently of the user’s own code.

4 SMT translation by evaluation
We have described how to use types to identify specifica-

tions that can be translated to SMT solvers that handle linear

constraints and uninterpreted functions. We complete the

journey by using the inferred typing information as input for

a Normalisation by Evaluation (NbE) procedure that turns a

higher-order specification from Section 3 into input suitable

for an SMT solver. The results of this section have been for-

malised in Agda
2
. To simplify our development, we assume

that all higher kinded types have been fully applied (this

2
Agda code is available at https://github.com/vehicle-lang/vehicle-
formalisation. We assume functional extensionality as an axiom.

is guaranteed by the elaboration process) and that we only

deal with queries in existential form (universal and parallel

queries would be minor extensions).

Due to the relatively high complexity of the IR — indexed

types, polymorphism, arrays, and higher-order functions —

we use Categorical Logic techniques to build three models

that constitute our normalisation procedure and correctness

proof. The first model in Section 4.2 defines the “standard

semantics” of IR, i.e., where the Real type is interpreted as

rational numbers, unquantified Booleans are interpreted as

Booleans, and quantified Booleans are interpreted as Agda

Sets. The secondmodel in Section 4.3 defines a semi-syntactic

“normalising” model, where linear Reals are interpreted as

linear expressions, unquantified Booleans as constraint ex-

pressions, and quantified Booleans as logical formulas with

quantifiers. Interpreting a specification in the normalising

model, and evaluating it inside Agda, yields a logical formula

suitable for an SMT solver, exploiting typing information to

ensure that normalisation is always possible.

The key challenge in constructing the normalising model

is to handle the two tricky features of the language that make

normalisation non local: the polymorphic if-then-else, and

the separation of those constraints involving function terms

and those containing linear arithmetic. Translation of these

features requires them to be “lifted” out of their context and

translated into additional constraints in the final query. We

accomplish this via a specially designed monad.

The correctness criterion for our normalisation procedure

is that the standard semantics of a specification 𝑡 agrees with

the semantics of the normalised form of 𝑡 , in the sense that

they are equi-inhabited Agda Sets. This means that if the

SMT solver a model for the existential quantifiers in a query,

then it is possible to translate these back to the quantifiers

in the original specification.

To prove correctness, we define a third model of the lan-

guage that relates the standard and normalising semantics.

This is effectively a Kripke logical relation between the two

models, defined as a model itself. Our use of categorical logic

to construct this model means that most of the effort is con-

centrated on the specifics of dealing with linear arithmetic

and logical constraints with quantification.

4.1 Representing the Syntax
We represent the syntax of the IR in Agda using an intrinsi-

cally typed representation [Altenkirch and Reus 1999; Belle-

garde and Hook 1994; Bird and Paterson 1999]. This means

that we define a datatype Δ | Γ ⊢ 𝐴 of well-typed terms,

where Δ is a kinding context assigning kinds to type level

variables, Γ is a typing context assigning types to term level

variables, and 𝐴 is the result type. The constructors of this

type include the standard typed 𝜆-calculus rules for type and

term level abstraction and incorporate the typing rules given

in Figures 3 and 4. Variables, at both the type and term level

are represented using de Bruijn indices. We do not require

https://github.com/vehicle-lang/vehicle-formalisation
https://github.com/vehicle-lang/vehicle-formalisation

CPP ’23, January 16–17, 2023, Boston, MA, USA Matthew L. Daggitt, Robert Atkey, Wen Kokke, Ekaterina Komendantskaya, and Luca Arnaboldi

renaming and substitution at the term level, but we do at the

type level in order to interpret universal quantification.

4.2 Standard Interpretation
The “standard interpretation” of the IR interprets the calcu-

lus as if it were making statements directly in mathematics.

We interpret types as sets and terms as functions from the

interpretation of contexts to the interpretation of the result

type. We interpret Real 𝑙 for all 𝑙 as the set of rational num-

bers and the operations of addition and multiplication as the

actual operations. Due to our use of Agda as our metatheory,

we are led to be a little more refined in our interpretation of

Bool. For Bool𝑈 𝑙 , we use the set of Boolean values. Using

Booleans allows us to interpret the if then else construct

as an actual if-then-else. For all other polarities 𝑝 , Bool 𝑝 𝑙 ,
the natural interpretation would be to interpret the type as

an Agda Set and interpret universal and existential quantifi-

cation using Agda’s Π- and Σ-types. However, this leads to a
universe level mismatch with the interpretation of numbers

and unquantified Booleans (rationals and Booleans are at

level 0, while Set is at level 1) which requires noisy explicit

lifting the interpretation. Therefore, we interpret Booleans

with quantifier polarity using codes for the quantifiers and

translate into Set for complete programs.

The standard semantics defines a function from closed

terms of Boolean type to sets, parameterised by the inter-

pretation of any uninterpreted functions in the term. The

informational content of these sets is the values in the quan-

tifiers used in the specification term.

SJ−K : (Q→ Q) → ⊢ Bool 𝑙 𝑝 → Set

4.3 Normalising Semantics
The key idea behind NbE, in general, is to provide a semantics

in the syntax of normal forms, rather the “intended” meaning

of the calculus. In this case, we interpret the Real type as lin-
ear expressions and the Bool type as constraint expressions,

then, and interpret all the operations of the calculus as ones

that manipulate expressions in normal form simulating the

intended meaning. Consequently, evaluating a closed term

⊢ 𝑡 : Bool𝐿 ∃ will yield a normal form constraint expression

suitable for a solver backend which is guaranteed to have the

same meaning as 𝑡 . This technique as similar to the use of

“smart constructors” for maintaining normal forms in typed

functional programming.

4.3.1 Context Indexed Sets. Normal form expressions’

free variables may not be the same as those of source lan-

guage expressions. For example, a source language variable

of type Real𝐶 will be a rational value, not a variable, and

normal form expressions will only ever have rational-valued

variables. To track free variables in normalised terms, we use

linear variable contexts defined by the following grammar:

LinVarCtxt ∋ Δ ::= 𝜀 | Δ, ·

References to variables in a linear variable context are repre-

sented as de Bruijn indices counting into the context:

dataVar : LinVarCtxt → Setwhere
zero : Var (Δ, ·)
succ : VarΔ → Var (Δ, ·)

Normalised syntax will seldom be used in the context where

it is created. To move syntax between contexts, we rename

the variables in them. A renaming from Δ1 to Δ2 is a map-

ping of variables in Δ2 to variables in Δ1: Δ1 ⇒𝑟 Δ2 =

(VarΔ2 → VarΔ1). Each of the different kinds of syntax

used in the normal forms must be renamable, meaning that

if 𝐴 : LinVarCtxt → Set is a set indexed by linear variable

contexts, and Δ1 ⇒𝑟 Δ2 is a renaming, then there is a func-

tion from 𝐴 Δ2 to 𝐴 Δ1 (note that renaming is contravariant,

because it acts on contexts).

4.3.2 Normal Forms. We use the following Agda data

type to represent linear arithmetic expressions in normal

form. This type is indexed by a linear variable context Δ that

controls what variables may appear. The form of the data

type ensures that all LinExpΔ terms consist of trees of terms

added together, with constants or variables multiplied by

constants at the leaves.

data LinExp (Δ : LinVarCtxt) : Setwhere
‘const : Q→ LinExpΔ
‘var : Q→ VarΔ → LinExpΔ
‘ + ‘ : LinExpΔ → LinExpΔ → LinExpΔ

We adopt a convention of using backticks ‘ to mark con-

structors used for normal forms. Constraint (unquantified

Boolean) expressions are represented by another data type:

dataConstraint (Δ : LinVarCtxt) : Setwhere
‘ ≤ ‘ : LinExpΔ → LinExpΔ → ConstraintΔ
‘ > ‘ : LinExpΔ → LinExpΔ → ConstraintΔ
‘ = ‘ : LinExpΔ → LinExpΔ → ConstraintΔ
‘ ≠ ‘ : LinExpΔ → LinExpΔ → ConstraintΔ
‘ = ‘f : VarΔ → VarΔ → ConstraintΔ
‘ ≠ ‘f : VarΔ → VarΔ → ConstraintΔ
‘and‘ : ConstraintΔ → ConstraintΔ → ConstraintΔ
‘or‘ : ConstraintΔ → ConstraintΔ → ConstraintΔ

The first four constructors represent equality, disequality,

and inequality constraints between linear expressions. The

fifth and sixth constructors represent equality and inequality

constraints between variables and the uninterpreted func-

tion applied to variables. We separate these two kinds of

basic constraint for two reasons. In general SMT solving, the

underlying DPLL(T) procedure only deals with individual

constraints from pure theories, with communication between

them handled by a Nelson-Oppen theory combination. So at

the lowest level, the two different kinds of constraint must be

separated. The second reason is that in the Marabou solver

for neural networks [Katz et al. 2019], the uninterpreted func-

tion is instantiated with an actual neural network at solving

Compiling Higher-Order Specifications to SMT Solvers: How to Deal with Rejection Constructively CPP ’23, January 16–17, 2023, Boston, MA, USA

time, and Marabou’s input format requires references to the

input and output variables of the network to be separate

from the actual application of the network, which is left

implicit. The final two constructors allow combination of

Constraints via conjunction and disjunction.

Both the LinExp and Constraint data types enforce a nor-

mal form. LinExps push all multiplication by constants to

variables, and Constraints represent constraints in negation

normal form. Counterparts to the operations of multiplica-

tion and negation directly manipulate the syntax trees to

maintain these normal forms:

_⊛ _ : Q→ LinExpΔ → LinExpΔ
negate : ConstraintΔ → ConstraintΔ

We construct normalised formulas with existentials in

them in two stages. First we generate “tree” formulas with

constraints at the leaves and quantifiers anywhere, as de-

scribed by the following data type:

dataExFormula : LinVarCtxt → Setwhere
‘constraint : ConstraintΔ → ExFormulaΔ
‘ex : ExFormula (Δ,Q) → ExFormulaΔ
‘and‘ : ExFormulaΔ → ExFormulaΔ → ExFormulaΔ
‘or‘ : ExFormulaΔ → ExFormulaΔ → ExFormulaΔ

We flatten the ExFormula representation to a formula in

prenex form, where all existential quantifiers are at the top

level. This representation can be submitted to an SMT solver.

4.3.3 Lifting Monad. With these representations of nor-

mal forms, we can nearly define an NbE procedure for our

language. However, there are two features of our IR that

disrupt a straightforward NbE algorithm.

1. When normalising if 𝑠 then 𝑡 else𝑢 conditional terms

we will no longer get a Boolean result from evaluating

the condition 𝑠 , instead getting a Constraint. If 𝑡 and

𝑢 are themselves Constraints, then we can apply the

meaning-preserving transformation if 𝑠 then 𝑡 else𝑢 {
((𝑠 ∧ 𝑡) ∨ (¬𝑠 ∧ 𝑢) (using the constructors and func-

tion defined in the previous section). However, if 𝑡

and 𝑢 are both linear expressions, or both of function

type, then it is not clear how to proceed. Intuitively,

we will always be able to translate away conditionals

because a complete property is of type Bool 𝑝 𝑙 , but

this relies on knowledge of the context in which linear

expressions and functions are interpreted.

2. A similar problem occurs when attempting to inter-

pret applications of uninterpreted functions into the

linear expression syntax, which does not contain func-

tion applications. An uninterpreted function applica-

tion needs to be interpreted in the wider context of

a constraint expression in terms of existentials and

constraints. For example, a use of 𝑓 𝑒 in a constraint

will be translated to ∃𝑥 .∃𝑦.𝑥 = 𝑒 ∧ 𝑦 = 𝑓 𝑥 ∧ 𝑝 , where

𝑦 is used as the replacement for 𝑓 𝑒 in the translation

of the context into 𝑝 . So we effectively need the ability

to make new definitions for variables as we interpret.

To address these features, we enrich our interpretation

to pretend that we do have them by treating them as com-
putational effects that can be handled in a context where

they can be interpreted. We define a monad Lift on the cat-

egory of LinVarCtxt indexed sets that supports operations

for interpreting conditionals and definitions. If we define

the interpretation of Real as not just LinExp but Lift LinExp,

then when interpreting terms of type Realwe are able to pre-
tend we have conditionals and let expressions. By applying

Moggi’s Call-by-Value [Moggi 1991] translation to systemat-

ically extend our interpretation to use Lift everywhere, we

will be able to interpret conditionals and definitions at any

type. The normalising interpretation of a closed term of exis-

tential Boolean type will live in Lift ExFormula, whereupon

we will be able to translate conditions and let expressions

into Boolean combinations and existentials, respectively.

The carrier of the Lift monad is defined as an indexed

inductive type. Each constructor implicitly quantifies over

all linear variable contexts Δ.

data Lift (𝐴 : Set
𝐿𝑖𝑛𝐶𝑡𝑥𝑡) : Set𝐿𝑖𝑛𝐶𝑡𝑥𝑡 where

return :𝐴 Δ → Lift𝐴 Δ
if :ConstraintΔ → Lift𝐴 Δ → Lift𝐴 Δ → Lift𝐴 Δ
letLinexp :LinExpΔ → Lift𝐴 (Δ,Q) → Lift𝐴 Δ
letFunexp :VarΔ → Lift𝐴 (Δ,Q) → Lift𝐴 Δ

The letFunexp and letLinexp constructors extend the context
with the result of a linear expression or function application

respectively. They can be thought of as the moral equivalents

of let𝑥 = 𝑒 in 𝑒′. The if constructor represents a conditional
predicated on a Constraint, with true and false branches as

children. The return constructor terminates a piece of virtual

syntax with some linear variable context indexed value.

4.3.4 The Normalising Interpretation. Equipped with

the normal form types LinExp and ConstraintExp and the

lifting monad Lift, we can now define the normalising in-

terpretation of the language. Here we use the linearity and

constraint information of well typed specifications to guar-

antee that an expression of type Bool𝐿 ∃ always yields a

formula containing only existentials over linear constraints

and functional (dis)equalities.

All types are interpreted as renamable sets as defined in

Section 4.3.1. The interpretation of the 𝜆-calculus part of the

system is interpreted as a standard Kripke (“possible worlds”)

semantics [Mitchell and Moggi 1991], albeit with the Lift

monad inserted in a CBV style. The base types are interpreted

like so, using the linearity and polarity information:

JReal𝐶K Δ = Q
JReal𝐿K Δ = LinExpΔ
JReal𝑁 KΔ = ⊤

JBool𝑈 𝑙KΔ = ConstraintΔ
JBool∃ 𝑙K Δ = ExFormulaΔ

CPP ’23, January 16–17, 2023, Boston, MA, USA Matthew L. Daggitt, Robert Atkey, Wen Kokke, Ekaterina Komendantskaya, and Luca Arnaboldi

Note that non-linear numbers are represented by the unit

type⊤. Any attempt to multiply linear expressions will result

in the unique value of this type. Since, by the typing relation,

it is not possible for non-linear terms to appear in constraints,

this discarding of information has no consequence.

The interpretation of a whole program in the normal-

ising semantics, after expansion of Lift ExFormula into an

ExFormula and flattening to prenex form, is a function:

NJ−K : ⊢ Bool𝐿 ∃ → PrenexFormula

Thus, just by our intrinsic typing of source and target pro-

grams, we know that we have a total function for normalising

programs that is always type correct.

4.4 Correctness
We are guaranteed well-formedness of normal forms by

Agda’s type checking. To prove full correctness, our desired

result is that for closed programs 𝑡 : ⊢ Bool𝐿 ∃, the stan-
dard semantics, for all function interpretations 𝑓 , SJ𝑡K 𝑓 (a

set) and the normalising semantics NJ𝑡K (a formula) agree,

in the sense that the set and the semantics of the normal

form are equi-inhabited. This specification only covers the

Bool type, however, so we define a logical relation to lift

this property to all the types in the language. This logical

relation relates the standard semantics Section 4.2 and the

normalisation semantics Section 4.3 at all types.

The structure of the logical relations argument follows

the Kripke semantics of the normalising semantics closely.

To show that evaluating the syntactic formula from the nor-

malisation yields the same result as the standard semantics,

we move from sets indexed with linear variable contexts to

sets indexed by a pair of a linear variable context and an

environment mapping variables to concrete rational values.

Once this setup is established, the construction of the logical

relations proof is structured as an alternative interpretation

of the syntax, reusing the general notions from Kripke se-

mantics.

Theorem 4.1. For closed terms 𝑡 : ⊢ Bool𝐿 ∃, the standard
semantics and the interpretation of the normalising seman-
tics are equi-satisfiable, for all concrete interpretations of the
(syntactically) uninterpreted function 𝑓 :

SJ𝑡K 𝑓 ⇔ JNJ𝑡KK

5 Conclusions
We have presented a type-system for higher-order specifi-

cation languages that tracks whether a specification can be

compiled to a QF_LRA solver. A key feature of this type

system is that the user can program as if it doesn’t exist;

they are not required to think in terms of the constraints of

the underlying solver when writing their specification. Our

system is constructive in two senses: if it detects that the

specification may not be compilable, it constructs a detailed

error message to guide the user to the source of the problem;

if the system can prove that a specification is compilable, the

type information generated is used directly in a normalisa-

tion procedure to generate formulas in a form suitable for

a QF_LRA solver. Moreover, we have proved that the nor-

malisation procedure is total, type preserving, and semantics

preserving in Agda.

Our system is necessarily incomplete in terms of which

specifications can be compiled, as we discussed in Section 3.5.

To remove all sources of incompleteness in general appears

to require some form of dependent types in order to track

the semantic meaning of terms. The alternative, discussed

in Section 3.5, is to delay checking until after an error has

occurred in normalisation. The result of this would be that all

valid specs would compile, at the cost of the error messages

sometimes being inaccurate.

Our normalisation procedure is an example of logical en-

coding of a high level language into SMT form. Solvers such

as Z3 [de Moura and Bjørner 2008] and CVC5 [Barbosa et al.

2022] perform some encoding internally, e.g., to separate

constraints between theories as we did for uninterpreted

functions and linear constraints, but make no formal claims

of correctness for these. Tools such as SMTCoq [Ekici et al.

2017] embed solving into a higher order language, but as-

sume that the problem is in the right form for a solver before

it is processed. Our procedure is remarkably generic in that

most of the technical development is concerned with general

concepts common to all Kripke semantics, and we expect

that it will be applicable to backends beyond SMT solvers.

We intend to parametrise over the choices of base kinds and

types to develop a general framework for normalising DSLs.

An interesting DSL is the Nested Relational Calculus (NRC)

which, like our language, is a higher order language that nor-

malises to flat SQL queries. Normalisation proofs for NRC in

the past have been significantly complicated by the presence

of if-then-else (e.g., Cooper [2009], which had a bug fixed by

Ricciotti and Cheney [2022]). Our Lift monad (Section 4.3.3),

provides a generic method.

The system we have presented is currently in use in the

Vehicle tool for neural network verification [Daggitt et al.

2022]. As the use of DSLs backed by automatic theorem

provers is only going to increase, we hope that this work

may be of use to others in improving the user experience for

the next generation of solvers.

Acknowledgments
This work was funded by the AISEC grant under Engineer-

ing and Physical Sciences Research Council. Grant num-

bers: EP/T026952/1, EP/T026960/1, and EP/T027037/1. For

the purpose of open access, the authors have applied a Cre-

ative Commons Attribution (CC BY) licence to any Author

Accepted Manuscript version arising from this submission.

Compiling Higher-Order Specifications to SMT Solvers: How to Deal with Rejection Constructively CPP ’23, January 16–17, 2023, Boston, MA, USA

References
Thorsten Altenkirch and Bernhard Reus. 1999. Monadic Presentations of

Lambda Terms Using Generalized Inductive Types. In Computer Science
Logic, 13th International Workshop, CSL ’99, 8th Annual Conference of the
EACSL, Madrid, Spain, September 20-25, 1999, Proceedings (Lecture Notes
in Computer Science, Vol. 1683), Jörg Flum and Mario Rodríguez-Artalejo

(Eds.). Springer, 453–468. https://doi.org/10.1007/3-540-48168-0_32
John Backes, Pauline Bolignano, Byron Cook, Catherine Dodge, Andrew

Gacek, Kasper Luckow, Neha Rungta, Oksana Tkachuk, and Carsten

Varming. 2018. Semantic-based automated reasoning for AWS access

policies using SMT. In 2018 Formal Methods in Computer Aided Design
(FMCAD). IEEE, 1–9.

Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna

Lachnitt, Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed,

Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew

Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar. 2022. cvc5: A

Versatile and Industrial-Strength SMT Solver. In Tools and Algorithms for
the Construction and Analysis of Systems - 28th International Conference,
TACAS 2022, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022,
Proceedings, Part I (Lecture Notes in Computer Science, Vol. 13243), Dana
Fisman and Grigore Rosu (Eds.). Springer, 415–442. https://doi.org/10.
1007/978-3-030-99524-9_24

Françoise Bellegarde and James Hook. 1994. Substitution: A Formal Methods

Case Study Using Monads and Transformations. Sci. Comput. Program.
23, 2-3 (1994), 287–311. https://doi.org/10.1016/0167-6423(94)00022-0

Ulrich Berger and Helmut Schwichtenberg. 1991. An Inverse of the Evalua-

tion Functional for Typed lambda-calculus. In Proceedings of the Sixth
Annual Symposium on Logic in Computer Science (LICS ’91), Amster-
dam, The Netherlands, July 15-18, 1991. IEEE Computer Society, 203–211.

https://doi.org/10.1109/LICS.1991.151645
Richard S. Bird and Ross Paterson. 1999. De Bruijn Notation as a Nested

Datatype. J. Funct. Program. 9, 1 (1999), 77–91. https://doi.org/10.1017/
s0956796899003366

Edwin Brady. 2013. Idris, a general-purpose dependently typed program-

ming language: Design and implementation. Journal of functional pro-
gramming 23, 5 (2013), 552–593.

Ezra Cooper. 2009. The Script-Writer’s Dream: How to Write Great SQL

in Your Own Language, and Be Sure It Will Succeed. In Database Pro-
gramming Languages - DBPL 2009, 12th International Symposium, Lyon,
France, August 24, 2009. Proceedings (Lecture Notes in Computer Science,
Vol. 5708), Philippa Gardner and Floris Geerts (Eds.). Springer, 36–51.

https://doi.org/10.1007/978-3-642-03793-1_3
Thierry Coquand. 1996. An algorithm for type-checking dependent types.

Science of Computer Programming 26, 1-3 (1996), 167–177.

Matthew L. Daggitt, Wen Kokke, Atkey Bob, Natalia Ślusarz, and Marco

Casadio. 2022. Vehicle. https://github.com/vehicle-lang/vehicle Ac-

cessed on 22.09.2022.

Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver.

In International conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 337–340.

Burak Ekici, Alain Mebsout, Cesare Tinelli, Chantal Keller, Guy Katz, An-

drew Reynolds, and Clark Barrett. 2017. SMTCoq: A plug-in for inte-

grating SMT solvers into Coq. In International Conference on Computer
Aided Verification. Springer, 126–133.

Jean-Yves Girard. 1971. Une extension de l’interprétation de Gödel à

l’analyse, et son application à l’élimination de coupures dans l’analyse

et la théorie des types. In Studies in Logic and the Foundations of Mathe-
matics. Vol. 63. Elsevier, 63–92.

Guy Katz, Derek A Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus,

Rachel Lim, Parth Shah, Shantanu Thakoor, HaozeWu, Aleksandar Zeljić,

et al. 2019. The Marabou framework for verification and analysis of

deep neural networks. In International Conference on Computer Aided
Verification. Springer, 443–452.

Hyondeuk Kim and Fabio Somenzi. 2006. Finite instantiations for integer

difference logic. In 2006 Formal Methods in Computer Aided Design. IEEE,
31–38.

Daniel Kroening and Michael Tautschnig. 2014. CBMC–C bounded model

checker. In International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems. Springer, 389–391.

Jeffrey R Lewis and BradMartin. 2003. Cryptol: High assurance, retargetable

crypto development and validation. In IEEE Military Communications
Conference, 2003. MILCOM 2003., Vol. 2. IEEE, 820–825.

John C. Mitchell and Eugenio Moggi. 1991. Kripke-Style Models for Typed

lambda Calculus. Ann. Pure Appl. Log. 51, 1-2 (1991), 99–124. https:
//doi.org/10.1016/0168-0072(91)90067-V

Eugenio Moggi. 1991. Notions of Computation and Monads. Inf. Comput.
93, 1 (1991), 55–92. https://doi.org/10.1016/0890-5401(91)90052-4

Tobias Nipkow. 1993. Functional unification of higher-order patterns. In

[1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer
Science. IEEE, 64–74.

Ulf Norell. 2008. Dependently typed programming in Agda. In International
school on advanced functional programming. Springer, 230–266.

Benjamin C Pierce. 2002. Types and programming languages. MIT press.

Wilmer Ricciotti and James Cheney. 2022. Strongly-Normalizing Higher-

Order Relational Queries. Log. Methods Comput. Sci. 18, 3 (2022). https:
//doi.org/10.46298/lmcs-18(3:23)2022

Sanjit A Seshia and Pramod Subramanyan. 2018. UCLID5: Integrating

modeling, verification, synthesis and learning. In 2018 16th ACM/IEEE
International Conference on Formal Methods and Models for System Design
(MEMOCODE). IEEE, 1–10.

Armando Solar-Lezama. 2008. Program synthesis by sketching. University
of California, Berkeley.

Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine

Delignat-Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet,

Pierre-Yves Strub, Markulf Kohlweiss, et al. 2016. Dependent types

and multi-monadic effects in F. In Proceedings of the 43rd annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
256–270.

Niki Vazou. 2016. Liquid Haskell: Haskell as a theorem prover. University of

California, San Diego.

Philip Wadler and Stephen Blott. 1989. How to make ad-hoc polymorphism

less ad hoc. In Proceedings of the 16th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. 60–76.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel.

2018. Efficient neural network robustness certification with general

activation functions. Advances in neural information processing systems
31 (2018).

https://doi.org/10.1007/3-540-48168-0_32
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1016/0167-6423(94)00022-0
https://doi.org/10.1109/LICS.1991.151645
https://doi.org/10.1017/s0956796899003366
https://doi.org/10.1017/s0956796899003366
https://doi.org/10.1007/978-3-642-03793-1_3
https://github.com/vehicle-lang/vehicle
https://doi.org/10.1016/0168-0072(91)90067-V
https://doi.org/10.1016/0168-0072(91)90067-V
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.46298/lmcs-18(3:23)2022
https://doi.org/10.46298/lmcs-18(3:23)2022

CPP ’23, January 16–17, 2023, Boston, MA, USA Matthew L. Daggitt, Robert Atkey, Wen Kokke, Ekaterina Komendantskaya, and Luca Arnaboldi

A Error messages
A.1 Other tools
Z3 SMTLib: The following non-linear SMTLib program:

(set-logic QF_LRA)
(declare-const a Real)
(define-fun f ((x Real) (y Real)) Real (* x y))
(assert (>= (f a a) 0)
(check-sat)

when run with Z3 version 4.8.12 outputs the error:

(error "line 5 column 0: logic does not support nonlinear
arithmetic")

In this case Z3 correctly identifies that the problem is the

non-linearity, but doesn’t provide any information about

where the non-linearity is. In big specifications with many

hundreds of lines, the non-linearity can be very hard to find.

F*: The following F* program with alternating quantifiers:

module Test
let f (x : int) = x + 1
let _ =
assert (forall y . exists x . f x == y)

when run with F* version 2021.06.06 outputs the error:

Test.fst(5,8-5,14): (Error 19) assertion failed SMT solver
says:
unknown because (incomplete quantifiers) (fuel=8; ifuel=2);
unknown because (incomplete quantifiers) (fuel=4; ifuel=2);
unknown because (incomplete quantifiers) (fuel=2; ifuel=2);
unknown because (incomplete quantifiers) (fuel=2; ifuel=1);

Note: ’canceled’ or ’resource limits reached’ means the
SMT query timed out, so you might want to increase the
rlimit; ’incomplete quantifiers’ means Z3 could not prove
the query, so try to spell your proof out in greater detail,
increase fuel or ifuel ’unknown’ means Z3 provided no
further reason for the proof failing (see also Test.fst(5,27-
5,46))

This error message is problematic for two reasons. Firstly,

the suggested fixes of increasing the resource limit or the

fuel wouldn’t work. Secondly, while it does mention the gen-

eral problem ‘incomplete quantifiers’, this phrase may not

be meaningful to a non-expert user who does not under-

stand the Z3 internals. Furthermore, it doesn’t identify the

alternating quantifiers as the source of the incompleteness.

We note that in general F* does support alternating quan-

tifiers, via SMT patterns. Nonetheless, in this case no such

patterns exist and therefore we believe the error message

should refer to the alternating quantifiers as the problem.

A.2 Our error messages
We now present example error messages generated by our

analysis.

Example 1: Alternating negated quantifiers

The specification:

fun 𝑓 : Vec Real 1 -> Vec Real 1

p : Bool
p = forall 𝑦. not not exists 𝑥. 𝑓 [𝑥] == [𝑦]

gives the error message:

Cannot verify specifications with alternating quantifiers.
In particular:
1. the inner quantifier is the ‘exists’ located at line 4,

columns 22-28
2. which is turned into a ‘forall’ by the ‘not’ at line 4,

columns 18-21
3. which is turned into a ‘exists’ by the ‘not’ at line 4,

columns 14-17
4. which alternates with the outer ‘forall’ quantifier at

line 4, columns 5-11.

Example 2: Non-linear quantified variables.

The specification:

fun 𝑓 : Vec Real 1 -> Vec Real 1

square : Real -> Real
square y = 𝑦 * 𝑦

p : Bool
p = forall 𝑥. f [0] ! 0 > square 𝑥

gives the error message:

Cannot verify specifications with non-linear constraints.
In particular the multiplication at line 4, columns 14-15
involves:
1. the quantified variable ‘x’ introduced at line 7, columns

5-11
2. which is used as an input to the function ‘square’ at

line 7, columns 27-35
3. which is used on the left hand side of the multiplication
and
1. the quantified variable ‘x’ introduced at line 7, columns

5-11
2. which is used as an input to the function ‘square’ at

line 7, columns 27-35
3. which is used on the right hand side of the multiplica-

tion

Example 3: Higher-order function application

The specification:

fun 𝑓 : Vec Real 1 -> Vec Real 1

g : Real -> Bool
g y = forall 𝑥. 𝑓 𝑥 ! 0 >= 𝑦

notApp : (Real -> Bool) -> Real -> Bool
notApp ℎ 𝑥 = not (ℎ 𝑥)

p : Bool
p = forall y. notApp g y

gives the error message:

Cannot verify specifications with alternating quantifiers.
In particular:
1. the inner quantifier is the ‘forall’ located at Line 4,

Columns 14-20
2. which is returned as an output of the function ‘g’ at

Line 10, Columns 23-31
3. which is used as an input to the function ‘notApp’ at

Line 10, Columns 16-33
4. which is turned into an ’exists’ by the ‘not’ at Line 7,

Columns 12-15
5. which is returned as an output of the function ‘notApp’

at Line 10, Columns 16-33
6. which alternates with the outer ‘forall’ at Line 10, Columns

5-11

CPP ’23, January 16–17, 2023, Boston, MA, USA Matthew L. Daggitt, Robert Atkey, Wen Kokke, Ekaterina Komendantskaya, and Luca Arnaboldi

B Constraint solving
The subtyping relation encodes the notion that the linearity and polarity of a type is the maximum of a set of other similar

types’s linearities and polarities. For example, [Real 𝐿, Real𝐶] are subtypes of Real 𝐿 as their linearities are bounded above

by 𝐿. In contrast, [Real 𝐿, Real 𝑁] are not a valid set of subtypes of Real 𝐿 as 𝑁 is above 𝐿 in the lattice defined in Figure 6.

The notation Bool__ ∈ 𝑋 indicates that at least one of the types in𝑋 is of type Bool𝑙 𝑝 for some 𝑙 and 𝑝 . Rules are tried in order.

(subtypeBool)

Bool _ _ ∈ {𝜏, 𝜏1, . . . , 𝜏𝑛}

𝑙, 𝑙1 . . . 𝑙𝑛
𝑙 ′
1
. . . 𝑙 ′𝑛−1

𝑝,𝑝1,. . . , 𝑝𝑛
𝑝′
1
. . . 𝑝′𝑛−1

= ?+

𝜏 ∼ Bool 𝑙 𝑝

𝜏1∼ Bool 𝑙1 𝑝1
· · ·

𝜏𝑛∼ Bool 𝑙𝑛 𝑝𝑛

MaxLin𝐶 𝑙1 𝑙
′
1

MaxLin 𝑙 ′
1

𝑙2 𝑙
′
2

· · ·
MaxLin 𝑙 ′𝑛−1 𝑙𝑛 𝑙

MaxPol𝑈 𝑝1 𝑝
′
1

MaxPol 𝑝′
1

𝑝2 𝑝
′
2

· · ·
MaxPol 𝑝′𝑛−1 𝑝𝑛 𝑝

Subtypes 𝜏 [𝜏1 . . . 𝜏𝑛]

(subtypeReal)

Real _ ∈ {𝜏, 𝜏1, . . . , 𝜏𝑛}
𝑙,𝑙1. . . 𝑙𝑛
𝑙 ′
1
. . . 𝑙 ′𝑛−1

= ?+

𝜏 ∼ Real 𝑙
𝜏1∼ Real 𝑙1

· · ·
𝜏𝑛∼ Real 𝑙𝑛

MaxLin𝐶 𝑙1 𝑙
′
1

MaxLin 𝑙 ′
1

𝑙2 𝑙
′
2

· · ·
MaxLin 𝑙 ′𝑛−1 𝑙𝑛 𝑙

Subtypes 𝜏 [𝜏1 . . . 𝜏𝑛]

(subtypeVec)

Vec _ _ ∈ {𝜏, 𝜏1, . . . , 𝜏𝑛} 𝑛, 𝜏 ′, 𝜏1′
1
. . . 𝜏 ′𝑛 = ?+

𝜏 ∼ Vec 𝜏 ′ 𝑛
𝜏1∼ Vec 𝜏 ′

1
𝑛

· · ·
𝜏𝑛∼ Vec 𝜏 ′𝑛 𝑛

Subtypes 𝜏 ′ [𝜏 ′
1
, . . . , 𝜏 ′𝑛]

Subtypes 𝜏 [𝜏1 . . . 𝜏𝑛]

(subtypeOther)

𝜏1 ∼ 𝜏2 . . . 𝜏𝑛−1 ∼ 𝜏𝑛 𝜏𝑛 ∼ 𝜏

Subtypes 𝜏 [𝜏1 . . . 𝜏𝑛]

Specific subtyping rules only need to be defined for the types with polarity and linearity annotations (i.e. Real and Bool) and
for the Vec which may recursively contain such types. The remaining types are related by equality in the final rule.

Why is the Subtypes relation n-ary? A binary relation would be infeasible as it would not allow for the calculation of a tight

upper bound. A ternary relation is minimal, and indeed the n-ary relation generates ternary MaxLin and MaxPol constraints.

The transition point from n-ary to ternary is in some sense arbitrary, but our choice to do it here greatly simplifies the type of

vector literals. We have not implemented rules for function subtyping in the above presentation, but we hypthesise it could be

done following the extensive literature in this area.

The solutions for HasExists is analagous to those for HasForall presented in Figure 5 in Section 3.3.3 in the main text.

(hasExistsReal)

𝑙1 ∼ 𝐿 𝑙2, 𝑝1, 𝑝2 = ?+ 𝜏1 ∼ Bool 𝑙2 𝑝1 𝜏2 ∼ Bool 𝑙2 𝑝2 ExistsPol 𝑝1 𝑝2

HasExists (Real 𝑙1 -> 𝜏1) 𝜏2

(hasExistsVec)

HasExists (𝜏1 -> 𝜏2) 𝜏3
HasExists (Vec 𝑛 𝜏1 -> 𝜏2) 𝜏3

(hasExistsIndex)

𝑙, 𝑝 = ?+ 𝜏1 ∼ Bool 𝑙 𝑝 𝜏2 ∼ Bool 𝑙 𝑝

HasExists (Index 𝑛 -> 𝜏1) 𝜏2

Equality is overloaded to apply to Real, Index and Vec 𝑜f the above. Note that extending equality to the Boolwould necessitate
splitting the type class HasEq into two separate classes, one for equality comparisons and one for inequality comparisons. This

Compiling Higher-Order Specifications to SMT Solvers: How to Deal with Rejection Constructively CPP ’23, January 16–17, 2023, Boston, MA, USA

is because the latter implicitly involves a negation and therefore would affect polarity.

(hasEqReal)

Real _ ∈ {𝜏1, 𝜏2} 𝑙1, 𝑙2, 𝑙3 = ?+ 𝜏1 ∼ Real 𝑙1 𝜏2 ∼ Real 𝑙2 𝜏3 ∼ Bool 𝑙3 𝑈 MaxLin 𝑙1 𝑙2 𝑙3

HasEq 𝜏1 𝜏2 𝜏3

(hasEqIndex)

Index _ ∈ {𝜏1, 𝜏2} 𝑛 = ?+ 𝜏1 ∼ Index 𝑛 𝜏2 ∼ Index 𝑛 𝜏3 ∼ Bool𝐶 𝑈

HasEq 𝜏1 𝜏2 𝜏3

(hasEqVec)

Vec _ _ ∈ {𝜏1, 𝜏2} 𝜏 ′
1
, 𝜏 ′

2
, 𝑛 = ?+ 𝜏1 ∼ Vec 𝜏 ′

1
𝑛 𝜏2 ∼ Vec 𝜏 ′

2
𝑛 HasEq 𝜏 ′

1
𝜏 ′
2
𝜏3

HasEq 𝜏1 𝜏2 𝜏3

Ordering is restricted to only apply to the Real and Index types.

(hasOrdReal)

Real _ ∈ {𝜏1, 𝜏2} 𝑙1, 𝑙2, 𝑙3 = ?+ 𝜏1 ∼ Real 𝑙1 𝜏2 ∼ Real 𝑙2 𝜏3 ∼ Bool 𝑙3 𝑈 MaxLin 𝑙1 𝑙2 𝑙3

HasEq 𝜏1 𝜏2 𝜏3

(hasOrdIndex)

Index _ ∈ {𝜏1, 𝜏2} 𝑛 = ?+ 𝜏1 ∼ Index 𝑛 𝜏2 ∼ Index 𝑛 𝜏3 ∼ Bool𝐶 𝑈

HasEq 𝜏1 𝜏2 𝜏3

Finally, the HasIndexLiteral constraint simply ensures that the literal value fits inside the required index type.

(hasIndexLiteral)

𝑖 < 𝑛

HasIndexLiteral 𝑖 (Index 𝑛)

CPP ’23, January 16–17, 2023, Boston, MA, USA Matthew L. Daggitt, Robert Atkey, Wen Kokke, Ekaterina Komendantskaya, and Luca Arnaboldi

C Incompleteness
As discussed in Section 3.5, the type-system is incomplete

and computes an under-approximation of whether a given

specification lies in the QF_LRA fragment. Here we list of

some of the sources of incompleteness, and a brief discussion

of whether they can be mitigated.

Numeric cancellation. As no normalisation is performed,

then expressions that cancel will be given a conservative clas-

sification e.g.

forall 𝑥. x * x − x * x >= 0

will be marked as non-linear. This is not easily fixable under

the current scheme.

Boolean cancellation. Similar to numeric cancellation,

the following:

False and exists 𝑥. 𝑥 >= 0

will be marked as existentially quantified. This is not easily

fixable under the current scheme.

Vector indexing. Thanks to the subtyping relation in Ap-

pendix B, a vector of rationals takes themaximum linearity of

its elements. Therefore if x is a quantified variable then [𝑥, 0]

will be typed as a vector of linear rationals. Consequently:

forall 𝑥. [x * x, 0] ! 1 >= 0
will be typed as a non-linear expression despite actually be-

ing constant. To solve this, the type-system could be refined

to have dependently-typed indexing of heterogeneously-

typed products.

If-statements. A similar problem occurs in the different

branches of if-statements, e.g.

(if 𝑥 > 0 then 𝑦 else 1) * (if 𝑥 < 0 then 1 else 𝑦)
will be typed as a non-linear expression despite the fact that

the two conditions are mutually exclusive.

A slightly more subtle problem is the linearity and polarity

of the conditional statement. For example:

[0, 1] ! (if 𝑥 ∗ 𝑥 > 1 then 0 else 1)
is a non-linear specification but the return type of the if
is Index 2 and therefore cannot store this information. Out

system works around this by requiring the condition to be

linear and unquantified. In general, to handle this in general

appears to require an effects system to track that the output

of the if implicitly depends on a non-linear constraint.

Received 2022-09-21; accepted 2022-11-21

	Abstract
	1 Introduction
	1.1 Existing approaches
	1.2 Our contributions

	2 User language
	3 QF_LRA analysis
	3.1 Intermediate representation
	3.2 Elaboration
	3.3 Type checking
	3.4 Worked example
	3.5 Using the analysis
	3.6 A possible alternative approach

	4 SMT translation by evaluation
	4.1 Representing the Syntax
	4.2 Standard Interpretation
	4.3 Normalising Semantics
	4.4 Correctness

	5 Conclusions
	Acknowledgments
	References
	A Error messages
	A.1 Other tools
	A.2 Our error messages

	B Constraint solving
	C Incompleteness

