

antonio vergari (r

@tetraduzione

joint work with Kareem Ahmed, Andreas Grivas, Lorenzo Loconte, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck, Nicola di Mauro, Robert Peharz, Adam Lopez

27th Oct 2023 - Workshop on Safe and Robust Machine Learning

april

april is probably a recursive identifier of a lab

april

autonomous & provably reliable intelligent learners

deep learning is differentiable lego

just stacking blocks can be unrealiable though...

especially when dealing with hard constraints

part I how to satisfy wanted constraints in NNs by design

part II how the design of NNs implicitly poses unwanted constraints

part l how to satisfy wanted constraints in NNs by design

part II how the design of NNs implicitly poses unwanted constraints

part I how to satisfy wanted constraints in NNs by design

integrate hard (logical) constraints

guarantee that predictions always satisfy constraints

fast and exact gradients

make any neural network architecture...

...guarantee all predictions to conform to constraints

Ground Truth

e.g. predict shortest path in a map

given x // e.g. a tile map

Ground Truth

Vlastelica et al., "Differentiation of blackbox combinatorial solvers", ICLR, 2020

given \mathbf{x} // e.g. a tile map find $\mathbf{y}^* = \operatorname{argmax}_{\mathbf{y}} p_{\theta}(\mathbf{y} \mid \mathbf{x})$ // e.g. a configurations of edges in a grid

Ground Truth

Vlastelica et al., "Differentiation of blackbox combinatorial solvers", ICLR, 2020

given $\mathbf{x} // e.g.$ a tile map find $\mathbf{y}^* = \operatorname{argmax}_{\mathbf{y}} p_{\theta}(\mathbf{y} \mid \mathbf{x}) // e.g.$ a configurations of edges in a grid s.t. $\mathbf{y} \models \mathsf{K} // e.g.$, that form a valid path

Ground Truth

Vlastelica et al., "Differentiation of blackbox combinatorial solvers", ICLR, 2020

 $\begin{array}{l} \text{given } \mathbf{x} \quad // \textit{e.g. a tile map} \\ \text{find } \mathbf{y}^* = \operatorname{argmax}_{\mathbf{y}} p_{\theta}(\mathbf{y} \mid \mathbf{x}) \quad // \textit{e.g. a configurations of edges in a grid} \\ \text{s.t. } \mathbf{y} \models \mathsf{K} \quad // \textit{e.g., that form a valid path} \end{array}$

// for a 12×12 grid, 2^{144} states but only 10^{10} valid ones!

Ground Truth

Vlastelica et al., "Differentiation of blackbox combinatorial solvers", ICLR, 2020

When?

given \mathbf{x} // e.g. a feature map find $\mathbf{y}^* = \operatorname{argmax}_{\mathbf{y}} p_{\theta}(\mathbf{y} \mid \mathbf{x})$ // e.g. labels of classes s.t. $\mathbf{y} \models \mathsf{K}$ // e.g., constraints over superclasses

$$\mathsf{K}: (Y_{\mathsf{cat}} \implies Y_{\mathsf{animal}}) \land (Y_{\mathsf{dog}} \implies Y_{\mathsf{animal}})$$

hierarchical multi-label classification

Giunchiglia and Lukasiewicz, "Coherent hierarchical multi-label classification networks", <u>NeurIPS</u>, 2020

given \mathbf{x} // e.g. a user preference over K - N sushi types find $\mathbf{y}^* = \operatorname{argmax}_{\mathbf{y}} p_{\theta}(\mathbf{y} \mid \mathbf{x})$ // e.g. prefs over N more types s.t. $\mathbf{y} \models \mathsf{K}$ // e.g., output valid rankings

user preference learning

Choi, Van den Broeck, and Darwiche, "Tractable learning for structured probability spaces: A case study in learning preference distributions", IJCAI, 2015

sigmoid linear layers $p(\mathbf{y} \mid \mathbf{x}) = \prod_{i=1}^{N} p(y_i \mid \mathbf{x})$

Ground Truth

ResNet-18

neural nets struggle to satisfy validity constraints!

I) Logical constraints can be hard to represent in a unified way \implies *a single framework* for matching, paths, hierarchies, ...

II) How to integrate logic and probabilities in a single neural layer \implies *combining soft and hard constraint*

II) Logical constraints are piecewise constant functions!

differentiable almost everywhere but gradient is zero!

I) Logical constraints can be hard to represent in a unified way \implies *a single framework* for matching, paths, hierarchies, ...

II) How to integrate logic and probabilities in a single neural layer \implies *combining soft and hard constraints*

III) Logical constraints are piecewise constant functions!

differentiable almost everywhere but gradient is zero!

I) Logical constraints can be hard to represent in a unified way \implies *a single framework* for matching, paths, hierarchies, ...

II) How to integrate logic and probabilities in a single neural layer \implies *combining soft and hard constraints*

III) Logical constraints are piecewise constant functions!

 \Rightarrow differentiable almost everywhere but **gradient is zero**!

Constraint losses

$\mathcal{L}(\theta;\mathbf{x},\mathbf{y}) + \lambda \mathcal{L}_{\mathsf{K}}(\mathbf{x},\mathbf{y})$ losses improve consistency during training...

Xu et al., "A Semantic Loss Function for Deep Learning with Symbolic Knowledge", , 2018

Constraint losses

$\mathcal{L}(\theta;\mathbf{x},\mathbf{y}) + \lambda \mathcal{L}_{\mathsf{K}}(\mathbf{x},\mathbf{y})$ losses improve consistency during training...

e.g., the *semantic loss*: $\mathcal{L}_{SL} := -\log \sum_{\mathbf{y} \models \mathsf{K}} \prod_i p(Y_i \mid \mathbf{x})$

Xu et al., "A Semantic Loss Function for Deep Learning with Symbolic Knowledge", , 2018

Constraint losses

Ground Truth

ResNet-18

Semantic Loss

...but cannot guarantee consistency at test time!

	Losses			LAYERS				
DESIDERATUM	DL2 [29]	SL [80]	NESYENT [3]	FIL	EBM [43]	MULTIPLEXNET [38]	CCN [33]	SPL (ours)
(D1) Probabilistic	×	1	1	1	×	1	×	1
(D2) Expressive	×	×	×	X	1	×	×	1
(D3) Consistent	×	×	×	X	×	\checkmark	1	1
(D4) General	1	1	1	X	1	1	×	1
(D5) Modular	1	1	1	1	1	1	1	1
(D6) Efficient	\checkmark	1	\checkmark	✓	×	×	\checkmark	\checkmark

Ground Truth

SPL (ours)

you can predict valid paths 100% of the time!

take an unreliable neural network architecture...

.....and replace the last layer with a semantic probabilistic layer

$$p(\mathbf{y} \mid \mathbf{x}) = \boldsymbol{q}_{\boldsymbol{\Theta}}(\mathbf{y} \mid g(\mathbf{z}))$$

 $oldsymbol{q}_{oldsymbol{\Theta}}(\mathbf{y} \mid g(\mathbf{z}))$ is an expressive distribution over labels

$$p(\mathbf{y} \mid \mathbf{x}) = \boldsymbol{q}_{\boldsymbol{\Theta}}(\mathbf{y} \mid g(\mathbf{z})) \cdot \boldsymbol{c}_{\mathsf{K}}(\mathbf{x}, \mathbf{y})$$

 $c_{\mathsf{K}}(\mathbf{x},\mathbf{y})$ encodes the constraint $\mathbbm{1}\{\mathbf{x},\mathbf{y}\models\mathsf{K}\}$

SPL

$$p(\mathbf{y} \mid \mathbf{x}) = \boldsymbol{q}_{\Theta}(\mathbf{y} \mid \boldsymbol{g}(\mathbf{z})) \cdot \boldsymbol{c}_{\mathsf{K}}(\mathbf{x}, \mathbf{y})$$

$$p(\mathbf{y} \mid \mathbf{x}) = \boldsymbol{q}_{\Theta}(\mathbf{y} \mid g(\mathbf{z})) \cdot \boldsymbol{c}_{\mathsf{K}}(\mathbf{x}, \mathbf{y}) / \boldsymbol{\mathcal{Z}}(\mathbf{x})$$
$$\boldsymbol{\mathcal{Z}}(\mathbf{x}) = \sum_{\mathbf{y}} q_{\Theta}(\mathbf{y} \mid \mathbf{x}) \cdot c_{\mathsf{K}}(\mathbf{x}, \mathbf{y})$$

/63

Can we design q and c to be expressive models yet yielding a tractable product?

A grammar for tractable computational graphs

I. A simple tractable function is a circuit

 X_1

A grammar for tractable computational graphs

I. A simple tractable function is a circuit

II. A weighted combination of circuits is a circuit

A grammar for tractable computational graphs

I. A simple tractable function is a circuit
II. A weighted combination of circuits is a circuit
III. A product of circuits is a circuit

A grammar for tractable computational graphs

A grammar for tractable computational graphs

1. A grammar for tractable models

One formalism to represent many models. #HMMs #Trees #XGBoost, ...

2. Expressiveness

Competitive with intractable models, VAEs, Flow ... # hierachical # mixtures # polynomials

1. A grammar for tractable models

One formalism to represent many models. #HMMs #Trees #XGBoost, ...

2. Expressiveness

Competitive with intractable models, VAEs, Flow ... # hierachical # mixtures # polynomials

3. Tractability == Structural Properties!!!

Exact computations of reasoning tasks are certified by guaranteeing certain structural properties. *#marginals #expectations #MAP*, *#product ...*

Structural properties

smoothness

decomposability

determinism

compatibility

Vergari et al., "A Compositional Atlas of Tractable Circuit Operations: From Simple Transformations to Complex Information-Theoretic Queries", NeurIPS, 2021

Structural properties

Vergari et al., "A Compositional Atlas of Tractable Circuit Operations: From Simple Transformations to Complex Information-Theoretic Queries", NeurIPS, 2021

Structural properties

tractable computation of arbitrary integrals

$$p(\mathbf{y}) = \int_{\mathsf{val}(\mathbf{Z})} p(\mathbf{z}, \mathbf{y}) \, d\mathbf{Z}, \quad \forall \mathbf{Y} \subseteq \mathbf{X}, \quad \mathbf{Z} = \mathbf{X} \setminus \mathbf{Y}$$

$$\implies \text{sufficient and necessary conditions} for a single feedforward evaluation}$$

 \Rightarrow tractable partition function

Vergari et al., "A Compositional Atlas of Tractable Circuit Operations: From Simple Transformations to Complex Information-Theoretic Queries", NeurIPS, 2021

Tractable products

smooth, decomposable compatible

exactly compute \boldsymbol{Z} in time $O(|\boldsymbol{q}||\boldsymbol{c}|)$

Vergari et al., "A Compositional Atlas of Tractable Circuit Operations: From Simple Transformations to Complex Information-Theoretic Queries", NeurIPS, 2021

a conditional circuit $\boldsymbol{q}(\mathbf{y}; \boldsymbol{\Theta} = g(\mathbf{z}))$

and a logical circuit $\boldsymbol{c}(\mathbf{y},\mathbf{x})$ encoding K

compiling logical formulas into circuits

$$\begin{aligned} \mathsf{K}: \ (Y_1 = 1 \implies Y_3 = 1) \\ \wedge \ (Y_2 = 1 \implies Y_3 = 1) \\ & \mathbb{I}\{Y_1 = 0\} \bigodot \qquad \mathbb{I}\{Y_1 = 1\} \bigodot \qquad \mathbb{I}\{Y_2 = 0\} \bigodot \\ & \mathbb{I}\{Y_2 = 1\} \bigodot \qquad \mathbb{I}\{Y_3 = 0\} \bigodot \qquad \mathbb{I}\{Y_3 = 1\} \bigodot \end{aligned}$$

Pipatsrisawat and Darwiche, "New Compilation Languages Based on Structured Decomposability.", <u>AAAI</u>, 2008

Pipatsrisawat and Darwiche, "New Compilation Languages Based on Structured Decomposability.", <u>AAAI</u>, 2008

$$\mathsf{K} : (Y_1 = 1 \implies Y_3 = 1)$$
$$\land \quad (Y_2 = 1 \implies Y_3 = 1)$$

Pipatsrisawat and Darwiche, "New Compilation Languages Based on Structured Decomposability.", <u>AAAI</u>, 2008

$$\mathsf{K}: (Y_1 = 1 \implies Y_3 = 1)$$

$$\land \quad (Y_2 = 1 \implies Y_3 = 1)$$

$$\mathbb{1}_{\{Y_2 = 0\}} \bigcirc$$

$$\mathbb{1}_{\{Y_1 = 1\}} \bigcirc$$

$$\mathbb{1}_{\{Y_1 = 0\}} \bigcirc$$

 $\mathbb{I}\left(Y=1\right)$

 $\mathbf{\nabla}$

Pipatsrisawat and Darwiche, "New Compilation Languages Based on Structured Decomposability.", <u>AAAI</u>, 2008

$$\mathsf{K}: \ (Y_1 = 1 \implies Y_3 = 1)$$
$$\land \quad (Y_2 = 1 \implies Y_3 = 1)$$

Pipatsrisawat and Darwiche, "New Compilation Languages Based on Structured Decomposability.", AAAI, 2008

Tractable products

smooth, decomposable compatible

exactly compute \boldsymbol{Z} in time $O(|\boldsymbol{q}||\boldsymbol{c}|)$

Vergari et al., "A Compositional Atlas of Tractable Circuit Operations: From Simple Transformations to Complex Information-Theoretic Queries", NeurIPS, 2021

$$\begin{split} \mathsf{K}: \, (Y_1 = 1 \implies Y_3 = 1) \\ \wedge \quad (Y_2 = 1 \implies Y_3 = 1) \end{split}$$

1) Take a logical constraint

SPL recipe

$$\begin{split} \mathsf{K}:\, (Y_1=1 \implies Y_3=1) \\ \wedge \quad (Y_2=1 \implies Y_3=1) \end{split}$$

$$\begin{array}{c} 1 \left(Y_{5}=1\right) \bigodot \ref{eq: starting starting$$

1) Take a logical constraint

2) Compile it into a constraint circuit

SPL recipe

$$\mathsf{K} : (Y_1 = 1 \implies Y_3 = 1)$$

$$\land \quad (Y_2 = 1 \implies Y_3 = 1)$$

1) Take a logical constraint

2) Compile it into a constraint circuit

3) Multiply it by a circuit distribution

SPL recipe

$$\mathsf{K} : (Y_1 = 1 \implies Y_3 = 1)$$

$$\land \quad (Y_2 = 1 \implies Y_3 = 1)$$

1) Take a logical constraint

2) Compile it into a constraint circuit

3) Multiply it by a circuit distribution

4) train end-to-end by sgd!

how good are SPLs?

			,
_			-

		Simple Path			Preference Learning		
Architecture	Exact	Hamming	Consistent	Exact	Hamming	Consistent	
MLP+FIL	5.6	85.9	7.0	1.0	75.8	2.7	
MLP+ \mathcal{L}_{SL}	28.5	83.1	75.2	15.0	72.4	69.8	
MLP+NeSyEnt	30.1	83.0	91.6	18.2	71.5	96.0	
MLP+SPL	37.6	88.5	100.0	20.8	72.4	100.0	

Experiments

Architecture	Exact	Hamming	Consistent
ResNet-18+FIL	55.0	97.7	56.9
ResNet-18+ \mathcal{L}_{SL}	59.4	97.7	61.2
ResNet-18+SPL	78.2	96.3	100.0

Experiments

Ground Truth

cost: 57.31

FIL

cost: ∞

cost: ∞

cost: ∞

SPL

cost: 45.09

cost: 58.09

Experiments

DATASET	Ехаст Матсн		
	HMCNN	MLP+SPL	
CELLCYCLE	3.05 ± 0.11	3.79 ± 0.18	
DERISI	1.39 ± 0.47	2.28 ± 0.23	
Eisen	5.40 ± 0.15	6.18 ± 0.33	
Expr	4.20 ± 0.21	5.54 ± 0.36	
GASCH1	3.48 ± 0.96	4.65 ± 0.30	
GASCH2	3.11 ± 0.08	3.95 ± 0.28	
SEQ	5.24 ± 0.27	7.98 ± 0.28	
Spo	1.97 ± 0.06	1.92 ± 0.11	
DIATOMS	48.21 ± 0.57	58.71 ± 0.68	
ENRON	5.97 ± 0.56	8.18 ± 0.68	
IMCLEF07A	79.75 ± 0.38	86.08 ± 0.45	
IMCLEF07D	76.47 ± 0.35	81.06 ± 0.68	

How to Turn Your Knowledge Graph Embeddings into Generative Models via Probabilistic Circuits

Lorenzo Loconte University of Edinburgh, UK 1.loconte@sms.ed.ac.uk Nicola Di Mauro University of Bari, Italy nicola.dimauro@uniba.it

Robert Peharz TU Graz, Austria robert.peharz@tugraz.at Antonio Vergari University of Edinburgh, UK avergari@ed.ac.uk

SPL meets knowledge graph embedding models

Q: (Loxoprofen, interacts, ?)

A: (Loxoprofen, interacts, phosphoric-acid) !!!

neural link predictors can violate domain constraints

$$p(\mathbf{y} \mid \mathbf{x}) = \boldsymbol{q}_{\boldsymbol{\Theta}}(\mathbf{y} \mid g(\mathbf{z})) \cdot \boldsymbol{c}_{\mathsf{K}}(\mathbf{x}, \mathbf{y}) / \boldsymbol{\mathcal{Z}}(\mathbf{x})$$

efficient and reliable reasoning over constraints

$$\int p(\mathbf{x}) \times \log \left(p(\mathbf{x}) / q(\mathbf{x}) \right) \, d\mathbf{X}$$

build a LEGO-like query calculus!

Vergari et al., "A Compositional Atlas of Tractable Circuit Operations: From Simple Transformations to Complex Information-Theoretic Queries", NeurIPS, 2021

part I how to satisfy wanted constraints in NNs by design

part II how the design of NNs implicitly poses unwanted constraints

Taming the Sigmoid Bottleneck: Provably Argmaxable Sparse Multi-Label Classification

Andreas Grivas¹, Antonio Vergari², Adam Lopez¹

¹ Institute for Language, Cognition, and Computation ² Institute for Adaptive and Neural Computation School of Informatics, University of Edinburgh {agrivas, avergari, alopez}@ed.ac.uk

sigmoid linear layers $p(\mathbf{y} \mid \mathbf{x}) = \prod_{i=1}^{n} p(y_i \mid \mathbf{x})$

clinically annotated text

 $n \approx 9000$ $d \approx 200 - 500$

large-scale biomedical question answering

 $\begin{array}{l} n \approx 20000 \\ d \approx 200-500 \end{array}$

OpenImages Dataset **object recognition**

 $\begin{array}{l} n \approx 9000 \\ d \approx 200-500 \end{array}$

n = 3d = 2

some label configurations are *unargmaxable*!

54/63

$$\nexists \mathbf{x} : \operatorname{argmax}_{\mathbf{y}'} p(\mathbf{y}' \mid \mathbf{x}; \mathbf{W}) = \mathbf{y}$$

/63

n = 3d = 2

-+- and +-+ are *unargmaxable*!

exponentially many configurations are unargmaxable

but real data is sparse...

K-active labels

clinically annotated text

 $n \approx 9000$ K = 80

large-scale biomedical question answering

 $n \approx 20000$ K = 50

OpenImages Dataset **object recognition**

 $n \approx 9000$ K = 50

even sparse label configurations are unargmaxable

we provide a Chebyshev LP to *verify argmaxability*

58/63

and a new differentiable layer to *guarantee argmaxability* for *K*-active label configurations

and a new differentiable layer to guarantee argmaxability based on the DFT 60/63

with comparable or better performance

part l how to satisfy wanted constraints in NNs by design

part II how the design of NNs implicitly poses unwanted constraints

Ask me anything!