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deep learning is differentiable lego
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just stacking blocks can be unrealiable though…
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especially when dealing with hard constraints
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part I how to satisfy wanted constraints
in NNs by design

part II how the design of NNs implicitly poses
unwanted constraints
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Why?

“How can neural nets
reason and learn with
symbolic constraints
reliably and efficiently?”
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integrate hard (logical) constraints
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Why?

“How can neural nets
reason and learn with
symbolic constraints
reliably and efficiently?”

fast and exact gradients
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Why?

make any neural network architecture…
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Why?

…guarantee all predictions to conform to constraints
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When?

Ground Truth

e.g. predict shortest path in a map
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When?

given x // e.g. a tile map
find y∗ = argmaxy pθ(y | x) // e.g. a configurations of edges in a grid

s.t. y |= K // e.g., that form a valid path

// for a 12× 12 grid, 2144 states but only 1010 valid ones!
Ground Truth

nesy structured output prediction (SOP) tasks

Vlastelica et al., “Differentiation of blackbox combinatorial solvers”, ICLR, 2020 13/63



When?

given x // e.g. a feature map
find y∗ = argmaxy pθ(y | x) // e.g. labels of classes

s.t. y |= K // e.g., constraints over superclasses

K : (Ycat =⇒ Yanimal) ∧ (Ydog =⇒ Yanimal)

hierarchical multi-label classification

Giunchiglia and Lukasiewicz, “Coherent hierarchical multi-label classification networks”, NeurIPS,
2020 14/63



When?

given x // e.g. a user preference overK −N sushi types
find y∗ = argmaxy pθ(y | x) // e.g. prefs overN more types

s.t. y |= K // e.g., output valid rankings

user preference learning

Choi, Van den Broeck, and Darwiche, “Tractable learning for structured probability spaces: A case
study in learning preference distributions”, IJCAI, 2015 15/63



e.g.,

sigmoid linear layers
p(y | x) =

∏N
i=1 p(yi | x)
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When?

Ground Truth ResNet-18

neural nets struggle to satisfy validity constraints!
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the issues!

I) Logical constraints can be hard to represent in a unified way
⇒ a single framework for matching, paths, hierarchies, …

II) How to integrate logic and probabilities in a single neural layer
⇒ combining soft and hard constraints

III) Logical constraints are piecewise constant functions!
⇒ differentiable almost everywhere but gradient is zero!
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Constraint losses

L(θ;x,y) + λLK(x,y)

losses improve consistency during training…

Xu et al., “A Semantic Loss Function for Deep Learning with Symbolic Knowledge”, , 2018 19/63



Constraint losses

L(θ;x,y) + λLK(x,y)

losses improve consistency during training…

e.g., the semantic loss: LSL := − log
∑

y|=K

∏
i p(Yi | x)

Xu et al., “A Semantic Loss Function for Deep Learning with Symbolic Knowledge”, , 2018 19/63



Constraint losses

Ground Truth ResNet-18 Semantic Loss

…but cannot guarantee consistency at test time!
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what?
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SPL

Ground Truth ResNet-18 Semantic Loss SPL (ours)

you can predict valid paths 100% of the time!
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How?

take an unreliable neural network architecture…
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How?

……and replace the last layer with
a semantic probabilistic layer
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SPL

SPL
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SPL

SPL

p(y | x) = qΘ(y | g(z))

qΘ(y | g(z)) is an expressive distribution over labels
25/63



SPL

SPL

p(y | x) = qΘ(y | g(z)) · cK(x,y)

cK(x,y) encodes the constraint 1{x,y |= K}
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SPL

SPL

p(y | x) = qΘ(y | g(z)) · cK(x,y)

a product of experts : (
25/63



SPL

SPL

p(y | x) = qΘ(y | g(z)) · cK(x,y)/Z(x)

Z(x) =
∑

y
qΘ(y | x) · cK(x,y)
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Goal

Can we design q and c

to be expressive models
yet yielding a tractable product?
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Probabilistic Circuits (PCs)
A grammar for tractable computational graphs

X1
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I. A simple tractable function is a circuit

II. A weighted combination of circuits is a circuit

III. A product of circuits is a circuit
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X1 X1 X1

w1 w2
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Probabilistic Circuits (PCs)
A grammar for tractable computational graphs

X1 X1 X1

w1 w2

×

X1 X2

×

X1 X2

×

X1 X2

w1 w2

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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…why PCs?

1. A grammar for tractable models
One formalism to represent many models. #HMMs #Trees #XGBoost, …

2. Expressiveness
Competitive with intractable models, VAEs, Flow…#hierachical #mixtures #polynomials
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…why PCs?

1. A grammar for tractable models
One formalism to represent many models. #HMMs #Trees #XGBoost, …

2. Expressiveness
Competitive with intractable models, VAEs, Flow…#hierachical #mixtures #polynomials

3. Tractability == Structural Properties!!!
Exact computations of reasoning tasks are certified by guaranteeing certain structural
properties. #marginals #expectations #MAP, #product …

28/63



Structural properties

smoothness

decomposability

determinism

compatibility

Vergari et al., “A Compositional Atlas of Tractable Circuit Operations: From Simple
Transformations to Complex Information-Theoretic Queries”, NeurIPS, 2021 29/63
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Structural properties

property A

property B

property C

property D

tractable computation of arbitrary integrals

p(y) =

∫
val(Z)

p(z,y) dZ, ∀Y ⊆ X, Z = X \Y

⇒ sufficient and necessary conditions
for a single feedforward evaluation

⇒ tractable partition function

Vergari et al., “A Compositional Atlas of Tractable Circuit Operations: From Simple
Transformations to Complex Information-Theoretic Queries”, NeurIPS, 2021 29/63



Tractable products

X1

X2

X3

× ×

X1

X1

X2

×

× X3

×

X1

X1

X2

X2

×

×

X3

X3

×

×

smooth, decomposable
compatible

exactly compute Z in time O(|q||c|)

Vergari et al., “A Compositional Atlas of Tractable Circuit Operations: From Simple
Transformations to Complex Information-Theoretic Queries”, NeurIPS, 2021 30/63



SPL

Y1

Y2

Y1

Y2

×

×

Y3

Y3

×

×

q

g

a conditional circuit q(y;Θ = g(z))
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SPL

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

×

×

1{Y3 = 1}

×

1{Y3 = 0}

c

and a logical circuit c(y,x) encoding K
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SPL

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

×

×

1{Y3 = 1}

×

1{Y3 = 0}

c

compiling logical formulas into circuits
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Knowledge compilation

K : (Y1 = 1 =⇒ Y3 = 1)

∧ (Y2 = 1 =⇒ Y3 = 1) 1{Y1 = 0} 1{Y1 = 1} 1{Y2 = 0}

1{Y2 = 1} 1{Y3 = 0} 1{Y3 = 1}

Pipatsrisawat and Darwiche, “New Compilation Languages Based on Structured
Decomposability.”, AAAI, 2008 34/63
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Tractable products

X1

X2

X3

× ×

X1

X1

X2

×

× X3

×

X1

X1

X2

X2

×

×

X3

X3

×

×

smooth, decomposable
compatible

exactly compute Z in time O(|q||c|)

Vergari et al., “A Compositional Atlas of Tractable Circuit Operations: From Simple
Transformations to Complex Information-Theoretic Queries”, NeurIPS, 2021 35/63



SPL recipe

K : (Y1 = 1 =⇒ Y3 = 1)

∧ (Y2 = 1 =⇒ Y3 = 1)

1) Take a
logical constraint
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SPL recipe

K : (Y1 = 1 =⇒ Y3 = 1)

∧ (Y2 = 1 =⇒ Y3 = 1)

1) Take a
logical constraint

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

× ×

1{Y3 = 1}

1{Y3 = 0}

× c

2) Compile it into
a constraint circuit

Y1

Y2

Y1

Y2

×

×

Y3

Y3

×

×

q

g

3)Multiply it
by a circuit distribution

4) train end-to-end by sgd!
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Experiments

SPL

how good are SPLs?
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Experiments

Simple Path Preference Learning

Architecture Exact Hamming Consistent Exact Hamming Consistent

MLP+FIL 5.6 85.9 7.0 1.0 75.8 2.7
MLP+LSL 28.5 83.1 75.2 15.0 72.4 69.8
MLP+NeSyEnt 30.1 83.0 91.6 18.2 71.5 96.0
MLP+SPL 37.6 88.5 100.0 20.8 72.4 100.0

38/63



Experiments

Architecture Exact Hamming Consistent

ResNet-18+FIL 55.0 97.7 56.9
ResNet-18+LSL 59.4 97.7 61.2
ResNet-18+SPL 78.2 96.3 100.0
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Experiments
Ground Truth FIL LSL SPL

cost: 39.31 cost:∞ cost:∞ cost: 45.09

cost: 57.31 cost:∞ cost:∞ cost: 58.09
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Experiments
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SPL meets knowledge graph embedding models
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Loxoprofen Ibuprofen

COX2

Inflammation Fever Pain

P-prostacyclin

(?)
interacts

interacts

treats treatstreatstreats

involved

• Drugs • Symptoms

• Proteins • Functions

〈Loxoprofen, treats, Inflammation〉

〈Ibuprofen, interacts, COX2〉

〈COX2, involved, P-prostacyclin〉

...

Q: 〈Loxoprofen, interacts, ?〉

A: 〈Loxoprofen, interacts, phosphoric-acid〉 !!!

neural link predictors can violate domain constraints
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SPL+KGE
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p(y | x) = qΘ(y | g(z)) · cK(x,y)/Z(x)

SPL

efficient and reliable reasoning over constraints
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∫∫∫
p(x) × log

(
p(x) / q(x)

)
dX

p

q

/

r

log

s

×
t

∫

build a LEGO-like query calculus!
Vergari et al., “A Compositional Atlas of Tractable Circuit Operations: From Simple
Transformations to Complex Information-Theoretic Queries”, NeurIPS, 2021 48/63



part I how to satisfy wanted constraints
in NNs by design

part II how the design of NNs implicitly poses
unwanted constraints
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sigmoid linear layers
p(y | x) =

∏n
i=1 p(yi | x)
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…

52/63

low-rank classifiers
# labels (n) >> embedding size (d)



e.g.,

clinically annotated text

n ≈ 9000
d ≈ 200− 500

large-scale biomedical
question answering

n ≈ 20000
d ≈ 200− 500

OpenImages Dataset
object recognition

n ≈ 9000
d ≈ 200− 500
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−−−−−−

−−−−++

−−++++

++−−−−

++++−−

++++++

some label configurations are unargmaxable! 54/63

n = 3

d = 2
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∄x : argmax
y′

p(y′ | x;W) = y
54/63
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−−++−− and ++−−++ are unargmaxable! 54/63

n = 3

d = 2
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but real data is sparse…
K-active labels

clinically annotated text

n ≈ 9000
K = 80

large-scale biomedical
question answering

n ≈ 20000
K = 50

OpenImages Dataset
object recognition

n ≈ 9000
K = 50
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even sparse label configurations are unargmaxable
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how do we know?

−−−−−−
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we provide a Chebyshev LP to verify argmaxability 58/63



and a new differentiable layer to guarantee argmaxability
for K-active label configurations
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and a new differentiable layer to guarantee argmaxability
based on the DFT 60/63
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with comparable or better performance
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SPL

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

Ask me anything!


