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deep learning is differentiable lego
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just stacking blocks can be unrealiable though...
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especially when dealing with hard constraints
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m how to satisfy wanted constraints
in NNs by design
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m how the design of NNs implicitly poses
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“How can neural nets
reason and learn with
symbolic constraints
reliably and efficiently?”



“How can neural nets
reason and learn with
symbolic constraints
reliably and efficiently?”

integrate hard (logical) constraints
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“How can neural nets
reason and learn with
symbolic constraints
reliably and efficiently?”

guarantee that predictions always satisfy constraints
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“How can neural nets
reason and learn with
symbolic constraints
reliably and efficiently?”

fast and exact gradients
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make any neural network architecture...
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*IIIIIIE*y

...guarantee all predictions to conform to constraints

11/63



Ground Truth

e.g. predict shortest path in a map
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givenx //e.g. atile map

Ground Truth

nesy structured output prediction (SOP) tasks

Vlastelica et al., “Differentiation of blackbox combinatorial solvers”, ICLR, 2020 13/63
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givenx //e.g. atile map
find y* = argmax, py(y | X) //eg. aconfigurations of edges in a grid
st.y | K /eg, that form a valid path

Ground Truth

nesy structured output prediction (SOP) tasks
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givenx //e.g. atile map
find y* = argmax, py(y | X) //eg. aconfigurations of edges in a grid
st.y | K /eg, that form a valid path

// for a 12 x 12 grid, 2'** states but only 10'° valid ones!

Ground Truth

nesy structured output prediction (SOP) tasks

Vlastelica et al., “Differentiation of blackbox combinatorial solvers”, ICLR, 2020 13/63



given X //e.g. afeature map
find y* = argmax, py(y | X) //eg. labels of classes
sty ): K //e.g., constraints over superclasses

K: (}/cat g Y;mimal) A (}/dog - Y;nimal)

hierarchical multi-label classification

Giunchiglia and Lukasiewicz, “Coherent hierarchical multi-label classification networks”, NeurlPS, 14
2020 /63




P @ ,\ /1 given X //e.g. a user preference over K — N sushi types
e find y* = argmax, py(y | x) //eg. prefs over N more types

@ sty |: K //e.g, output valid rankings
( G )

user preference learning

Choi, Van den Broeck, and Darwiche, “Tractable learning for structured probability spaces: A case
studly in learning preference distributions”, [/CAI, 2015 15/63



sigmoid linear layers
Py %) =TT p(i | %)

16/63



Ground Truth ResNet-18

neural nets struggle to satisfy validity constraints!
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I) Logical constraints can be hard to represent in a unified way
—> asingle framework for matching, paths, hierarchies, ...
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I) Logical constraints can be hard to represent in a unified way
—> asingle framework for matching, paths, hierarchies, ...

II) How to integrate logic and probabilities in a single neural layer
=> combining soft and hard constraints
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I) Logical constraints can be hard to represent in a unified way
—> asingle framework for matching, paths, hierarchies, ...

II) How to integrate logic and probabilities in a single neural layer
=> combining soft and hard constraints

[1) Logical constraints are piecewise constant functions!
=—> differentiable almost everywhere but gradient is zero!
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Constraint losses

L(0;x,y) + ALk(x,y)

losses improve consistency during training...

Xu et al., "A Semantic Loss Function for Deep Learning with Symbolic Knowledge”,, 2018 1963



Constraint losses

L(0;x,y) + ALk(x,y)

losses improve consistency during training...

e.g., the semantic loss: Lsi := —log > I, p(Yi [ x)

Xu et al., "A Semantic Loss Function for Deep Learning with Symbolic Knowledge”,, 2018 1963



Ground Truth ResNet-18 Semantic Loss

...but cannot guarantee consistency at test time!
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LOSSES LAYERS
DESIDERATUM  DL2 [29] SL [80] NESYENT [3] FIL EBM [43] MULTIPLEXNET [38] CCN [33] SPL (ours)
(D1) Probabilistic X v v v X v X v
(D2) Expressive X X X X v X X 4
(D3) Consistent X X X X X v v v
(D4) General v v v X v v X v
(D5) Modular v/ v v v v 4 v v
(D6) Efficient v v v v X X v v
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Ground Truth ResNet-18 Semantic Loss SPL (ours)

you can predict valid paths 100% of the time!
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take an unreliable neural network architecture...
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...... and replace the last layer with
a semantic probabilistic layer
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SPL
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X
e 7
Y SPL

p(y | x) =qe(y | g(2))

qge(y | g(z)) is an expressive distribution over labels
2563



X
e 7
Y SPL

p(y I x) =qe(y|g(z)) «(xy)

k(X,y) encodes the constraint 1{x,y K}

25/63



> p(y | %)

SPL

p(y I x) =qe(y|g(z)) «(xy)

a product of experts : (
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p(y |

X) = qe(y | 9(2)) -

Z ge(y | x

SPL

k(X y)/Z(x)

CKXY)
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Can we design q and ¢
to be expressive models
yet yielding a tractable product?
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Probabilistic Circuits (PCs)

A grammar for tractable computational graphs

I. A simple tractable function is a circuit
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A grammar for tractable computational graphs

I. A simple tractable function is a circuit

IIl. A weighted combination of circuits is a circuit

w1 wa
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Probabilistic Circuits (PCs)

A grammar for tractable computational graphs

I. A simple tractable function is a circuit
IIl. A weighted combination of circuits is a circuit

IIl. A product of circuits is a circuit

w1 wa

27163



Probabilistic Circuits (PCs)

A grammar for tractable computational graphs
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Probabilistic Circuits (PCs)

A grammar for tractable computational graphs

27163



1. A grammar for tractable models
One formalism to represent many models. #HMMs #Trees #XGBoost, ...

2. Expressiveness
Competitive with intractable models, VAEs, Flow...#hierachical #mixtures #polynomials
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1. A grammar for tractable models
One formalism to represent many models. #HMMs #Trees #XGBoost, ...

2. Expressiveness
Competitive with intractable models, VAEs, Flow...#hierachical #mixtures #polynomials

3. Tractability == Structural Properties!!!
Exact computations of reasoning tasks are certified by guaranteeing certain structural
properties. #marginals #expectations #MAP, #product ...

2863



Structural properties

decomposability

compatibility

Vergari et al., "A Compositional Atlas of Tractable Circuit Operations: From Simple
Transformations to Complex Information-Theoretic Queries”, NeurlPS, 2021 29163



Structural properties

property A
property B
property C

property D

Vergari et al., "A Compositional Atlas of Tractable Circuit Operations: From Simple
Transformations to Complex Information-Theoretic Queries”, NeurlPS, 2021
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Structural properties

property A

tractable computation of arbitrary integrals
roperty B
L y p(}’):/ p(z,y)dZ, VY C X, Z:X\Y
val(Z
property C @

—> sufficient and necessary conditions
or a single feedforward evaluation

property D =—> tractable partition function

Vergari et al., "A Compositional Atlas of Tractable Circuit Operations: From Simple
Transformations to Complex Information-Theoretic Queries”, NeurlPS, 2021

2963



Tractable products

smooth, decomposable
compatible

exactly compute Z in time O(|q||¢|)

Vergari et al., "A Compositional Atlas of Tractable Circuit Operations: From Simple
Transformations to Complex Information-Theoretic Queries”, NeurlPS, 2021 30563
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a conditional circuit q(y; © = ¢(z))

313



and a logical circuit c(y,x) encoding K

323



compiling logical formulas into circuits

333



Knowledge compilation

K:(Vi=1 = Ys=1)
AN (Ya=1= Y3=1) 1{1@:0}@ 1{1@:1}@ 1{1@:0}@

1n-10@)  wn-0@)  wn-10Q)

Pipatsrisawat and Darwiche, “New Compilation Languages Based on Structured
Decomposability.”, AAAI, 2008 345



Knowledge compilation
1{y: =1} (0 )—(H

K: (Y1=1 = Y3=1) 1{y; = 0} (0)

AN Ya=1= Y;3=1)

1{y; = 1} (0 )—(H)
1{¥> = 0} (0}

Pipatsrisawat and Darwiche, “New Compilation Languages Based on Structured
Decomposability.”, AAAI, 2008 345



K: 1=1= Y;=1)

A (Ya=1= Y3=1)

Pipatsrisawat and Darwiche, “New Compilation Languages Based on Structured
Decomposability.”, AAAl, 2008 34/63



K: V1i=1 = Y;=1)

Pipatsrisawat and Darwiche, “New Compilation Languages Based on Structured
Decomposability.”, AAAl, 2008 34/63



K: 1=1= Y;=1)

A (Ya=1= Y;=1)

Pipatsrisawat and Darwiche, “New Compilation Languages Based on Structured
Decomposability.”, AAAl, 2008 34/63



Tractable products

smooth, decomposable
compatible

exactly compute Z in time O(|q||¢|)

Vergari et al., "A Compositional Atlas of Tractable Circuit Operations: From Simple
Transformations to Complex Information-Theoretic Queries”, NeurlPS, 2021 35163



SPL recipe

K:\1=1= Y3=1)
AN (Yo=1 = Y3=1)

1) Take a
logical constraint
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SPL recipe

Kii=1= ¥3=1)
AN (Ya=1= Y3=1)

1) Take a 2) Compile itinto
logical constraint a constraint circuit
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SPL recipe

K:(V1=1 = Y3=1)

1) Take a 2) Compile it into 3) Multiply it
logical constraint a constraint circuit by a circuit distribution

3663



SPL recipe

K:(V1=1 = Y3=1)

1) Take a 2) Compile it into 3) Mu!tiply it. o
logical constraint a constraint circuit by a circuit distribution

4) train end-to-end by sgd!

3663



C
SPL

how good are SPLs?
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G

Simple Path Preference Learning

5 G
B @
v

Architecture Exact Hamming Consistent Exact Hamming Consistent

MLP+FIL 5.6 85.9 7.0 1.0 75.8 2.7
MLP+Ls 28.5 83.1 752 15.0 72.4 69.8
MLP+NeSyEnt  30.1 83.0 91.6 182 71.5 96.0

MLP+SPL 37.6 88.5 100.0 20.8 72.4 100.0

3863



Architecture Exact Hamming Consistent
ResNet-18+FIL 55.0 97.7 56.9
ResNet-18+Ls,  59.4 97.7 61.2
ResNet-18+SPL  78.2 96.3 100.0

3963



Ground Truth

cost: 39.31 cost: 45.09

cost: 57.31 cost:00 cost:00 cost: 58.09
40763



DATASET EXACT MATCH
HMCNN MLP+SPL

CELLCYCLE 3.05 +£0.11 3.79 +0.18
DERISI 1.39 &+ 0.47 2.28 + 0.23
EISEN 5.40 + 0.15 6.18 + 0.33
EXPR 4.20 +£0.21 5.54 + 0.36
GASCHI 3.48 +£ 0.96 4.65 + 0.30
GASCH2 3.11 + 0.08 3.95 + 0.28
SEQ 5.24 + 0.27 7.98 + 0.28
SPO 1.97 + 0.06 1.92 +0.11
DIATOMS 48.21 + 0.57 58.71 1+ 0.68
ENRON 5.97 &+ 0.56 8.18 + 0.68

IMCLEFO7A  79.75 £+ 0.38 86.08 + 0.45

IMCLEFO7D  76.47 + 0.35 81.06 4 0.68
4163




How to Turn Your Knowledge Graph Embeddings
into Generative Models via Probabilistic Circuits

Lorenzo Loconte Nicola Di Mauro
University of Edinburgh, UK University of Bari, Italy
1.loconte@sms.ed.ac.uk nicola.dimauro@uniba.it

Robert Peharz Antonio Vergari

TU Graz, Austria University of Edinburgh, UK

robert.peharzQtugraz.at avergari@ed.ac.uk

SPL meets knowledge graph embedding models
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® )
Inflammation | | Fever | | Pain | Drugs Symptoms

A ® Proteins Functions
treats treats treats | treats
(Loxoprofen, treats, Inflammation)
| Loxoprofen | | Ibuprofen | (Ibuprofen, interacts, COX2)

.
interacts .-

£

(COX2, involved, P-prostacyclin)

interacts

P-prostacyclin

involved Q: (Loxoprofen, interacts, ?)

A: (Loxoprofen, interacts, phosphoric-acid) !!!

neural link predictors can violate domain constraints
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SPL+KGE

L{(S,interacts, 0) = K} cx (S, R,0)

(pe - k) (5, R, 0)
®

4463
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p(y | x) =qely | 9(z)) - ck(x,y)/Z(x)

z |9/ -@ H X>re =~ ply|x)

X
e
Y SPL

efficient and reliable reasoning over constraints
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build a LEGO-like query calculus!

Vergari et al., "A Compositional Atlas of Tractable Circuit Operations: From Simple
Transformations to Complex Information-Theoretic Queries”, NeurlPS, 2021
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m how to satisfy wanted constraints
in NNs by design

m how the design of NNs implicitly poses
unwanted constraints
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Taming the Sigmoid Bottleneck:
Provably Argmaxable Sparse Multi-Label Classification

Andreas Grivas', Antonio Vergari;*, Adam Lopez;'

! Institute for Language, Cognition, and Computation
2 Institute for Adaptive and Neural Computation
School of Informatics, University of Edinburgh
{agrivas, avergari, alopez} @ed.ac.uk
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sigmoid linear layers
p(y [ %) =TIz plyi [ %)
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BIIIIII -

low-rank classifiers

# labels (n) >> embedding size (d) .



clinically annotated text

n ~ 9000
d ~ 200 — 500

BioA2Q

large-scale biomedical
question answering

n ~ 20000
d ~ 200 — 500

Openimages Dataset
object recognition

n ~ 9000
d ~ 200 — 500

5363



=3 —++ | +++

some label configurations are unargmaxable! 54



n=3 —++ |+t

++

px argmaxp(y’ | x; W) =y
y/ 54/63



—++ [ +++

++-

—+— and +—+ areunargmaxable! 546
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Feature Dimensionality d

exponentially many configurations are unargmaxable

55/63



but real data is sparse...

K-active labels

large-scale biomedical

clinically annotated text question answering
n ~ 9000 n ~ 20000
K =380 K =50

! - S
Openlmages Dataset
object recognition

n ~ 9000
K =50

56/63



MIMIC-III

BioASQ

100 100

80 / 80
60 60

% of test set Argmaxable

40 / 40
20 20
/

—e— BSL

0
25 50 100 200 400
d

even sparse label configurations are unargmaxable

T T T
50 100 200 400

d

Openlmages v6

100

80

60

40

207

/
/
a

25
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+

we provide a Chebyshev LP to verify argmaxability



and a new differentiable layer to guarantee argmaxability

for K-active label configurations
5963



MIMIC-I1I BioASQ Openlmages v6
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—=— DFT
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25 50 100 200 400 25 50 100 200 400 25 50 100 200 400
d d d

% of test set Argmaxable

and a new differentiable layer to guarantee argmaxability
based on the DFT 60/



F1@8 (%)

MIMIC-III BioASQ Openlmages v6
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with comparable or better performance
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Ask me anything!



