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Introduction

Large Language Models (LLMs) are now widely

studied and available to the public.
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Motivation

• Critical applications

• Legal - to abide legislation

• Safety - for example in the medical field

• Adversarial attacks

• Adversarial attacks on LLMs

• Character perturbations

• Word perturbations

• Sentence perturbations

There are legislation which state that it is

‘[...] unlawful for a bot to mislead people about

its artificial identity [...]’ [Legislature, 2018].
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Motivation

• Critical applications

• Legal - to abide legislation

• Safety - for example in the medical field

• Adversarial attacks

• Adversarial attacks on LLMs

• Character perturbations

• Word perturbations

• Sentence perturbations

Neural networks are well known to be fragile,

meaning they are susceptible to adversarial

examples.
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Motivation

• Critical applications

• Legal - to abide legislation

• Safety - for example in the medical field

• Adversarial attacks

• Adversarial attacks on LLMs

• Character perturbations

• Word perturbations

• Sentence perturbations

Are you a robot?

Are you not a robot?

Were you a robot?
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Motivation

• Critical applications

• Legal - to abide legislation

• Safety - for example in the medical field

• Adversarial attacks

• Adversarial attacks on LLMs

• Character perturbations

• Word perturbations

• Sentence perturbations

Are you a robot?

Am I talking to a robot?

Can u tell me if you are a chatbot?
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Our approach

• Verify the NLP system

• ϵ-ball

• Naive approach (ϵ-ball verification)
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Obstacles

There are some obstacles the prevent this naive

method to be effective:

• ϵ-balls may not contain valid sentences

• Semantic similarity does not entail

geometric proximity

[Pendlebury and Cavallaro, 2020]

• Generally, NNs need to be trained to

satisfy logical/semantic properties

15



Solutions

We propose some solutions:

• Convex-hull

• Rotation

• Shrinking

• Clustering

• Exploring spaces that cover semantic

similarities

• Training networks to have more precise

decision boundaries

• Data augmentation

• Adversarial training
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ANTONIO

NLP Data Set

ANTONIO - Abstract iNterpreTation fOr Nlp verIficatiOn

1. dataset curation

B)

A)

C)

unmodified
original

word level
attacks

char level
attacks

2. preparation of datasets
A) embeddings (BERT)

i

ii
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B) data set rotation C) dimensionality reduction
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3. transformations

A) shrinked hyper-rectangle B) clusters of hyper-rectangles

C) hyper-rectangles on attacks

4. models
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iv. epsilon
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viii. aug. word 
attack

5. evaluation
A) accuracy

B) attack efficacy

C) verification

D) epsilon cubes

semantic geometric 
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Results

Model Test Accuracy Attack Accuracy
Verification

Hϵ=0.005 Hϵ=0.05 Hpert

Nbase 93.87 89.68 88.67 1.79 11.69

Nadv 93.38 90.27 98.22 12.17 45.12

Table 1: Accuracy on test set and attacks and verificaton results using Marabou.

Hyper-rectangles Avg. Volume Contained U.S. (%) Contained U.S. (#) Total U.S.

Hϵ=0.005 1.00e-60 1.95 2821 144500

Hϵ=0.05 1.00e-30 38.47 55592 144500

Hpert 1.28e-30 47.67 68882 144500

Table 2: Number of unseen sentences inside each collection of hyper-rectangles.
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Conclusions

Some conlusions of this work:

• NLP verification, while challenging, it’s

possible and necessary.

• Semantically informed hyper-rectangles

improve on ϵballs in 2 ways:

• For ϵballs that share similar volume to our

hyper-rectangles, we greatly improve

verification.

• ϵballs that are small enough to achieve

high verification, do not contain many

unseen sentences.

• We hope that NLP problems will become

more popular within the verification

community and competitions.
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Future Work

We can improve at different stages of the

pipeline:

• More sophisticated attacks.

• Different embeddings that could better

enhance semantic similarity.

• More precise shapes.

• Certified training.

• More scalable verifiers.
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