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2Neural network

A neural network is a function N : Rn → Rm.
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3Neural networks

They are ideal for tasks where the semantics of the domain are poorly understood:

▶ they can learn to approximate complex functions.

▶ they are tolerant to noisy and incomplete data.

however...

▶ their solutions are not easily explainable.

▶ they are prone to a new range of bugs and safety and security problems.

Question: can we verify properties of neural network-enhanced software?
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4Can we verify properties of neural network-
enhanced software?

1. Can we state the properties?
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4Can we verify properties of neural network-
enhanced software?

1. Can we state the properties?
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5Property source 1: Universal properties

Properties that should hold of (almost) any neural network.
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6Example 1: Adversarial robustness

▶ the perturbations are imperceptible to human eye

▶ attacks transfer from one neural network to another

▶ affect any domain where neural networks are applied
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7Example 1: Adversarial robustness

Property: “small” changes in the input should produce “small” changes in the output.

Definition (Robustness)

Let f ∈ Rm → Rn be a neural network, x̂ ∈ Rm be an input and ϵ, δ ∈ R then the
network is ϵ− δ-robust around x̂ iff:

∀x ∈ Rm : |x− x̂| ≤ ϵ⇒ |f (x)− f (x̂)| ≤ δ
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8Property source 2: Approximations of standard algorithms

Sometimes neural networks are used to approximate “standard” algorithms.

Why? Mainly for performance reasons.

We can derive desired properties of the network from those of the original algorithm.
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9Example 2: ACAS Xu

A collision avoidance system for unmanned autonomous aircraft.

Inputs:

▶ Distance to intruder, ρ
▶ Angle to intruder, θ
▶ Intruder heading, φ
▶ Speed, vown
▶ Intruder speed, vint

Outputs:

▶ Clear of conflict
▶ Strong left
▶ Weak left
▶ Weak right
▶ Strong right
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10Example 2: ACAS Xu properties

Originally implemented as a 2Gb lookup table but was replaced with a neural network
in order to improve size and latency requirements.

Properties are derived from those of the original lookup table.
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11Example 2: ACAS Xu properties

10 different domain-specific properties in total.

Definition (ACAS Xu: Property 3)

If the intruder is directly ahead and is moving towards the ownship, the score for COC
will not be minimal.

1500 ≤ ρ ≤ 1800 ∧ −0.06 ≤ θ ≤ 0.06 ∧ ψ ≥ 3.10 ∧ vown ≥ 980 ∧ vint ≥ 960
⇒

∃a ∈ {SL, L,R,SR}.f (θ, ρ, φ, vown, vint)COC < f (θ, ρ, φ, vown, vint)a
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12Property source 3: Domain specific properties

Often there may be properties specific to the domain being modelled.
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13Example 3: fluid modelling

Consider trying to model a fluid in a tube.

Very difficult to do precisely, but we know:

▶ energy should be conserved.

▶ etc.
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14The lifecycle of neural network verification

Property
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15Challenges the area faces

▶ Theory: finding appropriate verification properties

A lot has to be done to even:

▶ ... understand the properties we do have

M. Casadio, E. Komendantskaya, M. Daggitt, W. Kokke, G. Katz, G. Amir, I. Refaeli:
Neural Network Robustness as a Verification Property: A Principled Case Study. CAV (1)
2022: 219-231

▶ ... or specifying/programming them in a clear way

M. Daggitt, W. Kokke, E. Komendantskaya, R. Atkey, L. Arnaboldi, N. Slusarz, M. Casadio,
B. Coke, and J. Lee. The Vehicle Tutorial: Neural Network Verification with Vehicle. The
6th Workshop on Formal Methods for ML-Enabled Autonomous Systems (FoMLAS’23).
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16Can we verify properties of neural network-
enhanced software?

2. What sort of verification algorithms exist?
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17Current Verifier Landscape

A whole range of domain-specific verifiers exist:

▶ Marabou (SMT technology)

▶ ERAN (abstract interpretation + MILP)

▶ Verisig (interval arithmetic)

▶ AlphaBetaCROWN (linear bound propagation)

▶ . . .

International Standards and Competitions

https://www.vnnlib.org/
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18The lifecycle of neural network verification

Property

Verification

Marabou
Eran
etc.
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19Challenges the area faces

▶ Theory: finding appropriate verification properties

▶ Verification: undecidability of non-linear real arithmetic and scalability of neural
network verifiers; proof certificates and soundness.

M. Daggitt, R. Atkey, W. Kokke, E. Komendantskaya, L. Arnaboldi: Compiling Higher-Order
Specifications to SMT Solvers: How to Deal with Rejection Constructively. CPP 2023

R. Desmartin, O. Isac, G. Passmore, K. Stark, E. Komendantskaya, G. Katz: Towards a Certified
Proof Checker for Deep Neural Network Verification. LOPSTR 2023: 198-209



Ekaterina Komendantskaya • Whats and Whys of Neural Network Verification

19Challenges the area faces

▶ Theory: finding appropriate verification properties

▶ Verification: undecidability of non-linear real arithmetic and scalability of neural
network verifiers; proof certificates and soundness.

M. Daggitt, R. Atkey, W. Kokke, E. Komendantskaya, L. Arnaboldi: Compiling Higher-Order
Specifications to SMT Solvers: How to Deal with Rejection Constructively. CPP 2023

R. Desmartin, O. Isac, G. Passmore, K. Stark, E. Komendantskaya, G. Katz: Towards a Certified
Proof Checker for Deep Neural Network Verification. LOPSTR 2023: 198-209



Ekaterina Komendantskaya • Whats and Whys of Neural Network Verification

20Can we verify properties of neural network-
enhanced software?

3. How do we ensure neural networks actually satisfy the properties we want?
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21The lifecycle of neural network verification

Property

Training

DL2
ACT
etc.

Verification

Marabou
Eran
etc.
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22Challenges the area faces

▶ Theory: finding appropriate verification properties

▶ Verification: undecidability of non-linear real arithmetic and scalability of neural
network verifiers; proof certificates and soundness

▶ Machine-learning: understanding and integrating property-driven training

▶ General way to convert logical properties into loss functions: Differentiable logics

N. Slusarz, E. Komendantskaya, M. Daggitt, R. Stewart, K. Stark: Logic of
Differentiable Logics: Towards a Uniform Semantics of DL. LPAR 2023: 473-493

▶ How to handle universal quantifiers?

∀x ∈ Rm : |x− x̂| ≤ ϵ ⇒ |f (x)− f (x̂)| ≤ δ

D. Kientiz: The Influence of Geometric Properties of Data Distributions on Artificial
Neural Networks. PhD Thesis, Heriot-Watt University, 2023
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23The lifecycle of neural network verification
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24Can we verify properties of neural network-
enhanced software?

1. Can we state the properties?

2. What sort of verification algorithms exist?

3. How do we ensure neural networks actually satisfy the properties we want?

4. How do we verify complex systems that contain neural nets?
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26Challenges the area faces

▶ Theory: finding appropriate verification properties
▶ Verification: undecidability of non-linear real arithmetic and scalability of neural

network verifiers; proof certificates and soundness
▶ Machine-learning: understanding and integrating property-driven training
▶ Complex systems: integration of neural net verification into complex systems

▶ Largely intersects with the area of Cyber-Physical Systems (CPS) verification
▶ Probably the next “Grand Challenge” for the area

▶ Work by NASA and Boeing researchers:

Corina S. Pasareanu, Ravi Mangal, Divya Gopinath, Huafeng Yu: Assumption
Generation for Learning-Enabled Autonomous Systems. RV 2023: 3-22

▶ Our humble example

M. Daggitt, W. Kokke, E. Komendantskaya, R. Atkey, L. Arnaboldi, N. Slusarz,
M. Casadio, B. Coke, and J. Lee. The Vehicle Tutorial: Neural Network
Verification with Vehicle. https://vehicle-lang.github.io/tutorial/

https://vehicle-lang.github.io/tutorial/
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27Can we verify properties of neural network-
enhanced software?

1. Can we state the properties?

2. What sort of verification algorithms exist?

3. How do we ensure neural networks actually satisfy the properties we want?

4. How do we verify complex systems that contain neural nets?

5. And how to hold all of this together?



Ekaterina Komendantskaya • Whats and Whys of Neural Network Verification

27Can we verify properties of neural network-
enhanced software?

1. Can we state the properties?

2. What sort of verification algorithms exist?

3. How do we ensure neural networks actually satisfy the properties we want?

4. How do we verify complex systems that contain neural nets?

5. And how to hold all of this together?



Ekaterina Komendantskaya • Whats and Whys of Neural Network Verification

28Programming Language Support

Property in Vehicle
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DL2 or
other DL
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example
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KeymaeraX
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Analysis & informative error messages
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29Challenges the area faces

▶ Theory: finding appropriate verification properties

▶ Verification: undecidability of non-linear real arithmetic and scalability of neural
network verifiers; proof certificates and soundness

▶ Machine-learning: understanding and integrating property-driven training

▶ Complex systems: integration of neural net verification into complex systems

▶ Programming: finding the right languages to support these developments
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30Complexity is Good!
(Thanks for your Attention)
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