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WHERE DO DIFFERENTIABLE LOGICS COME IN?
(AND WHAT ARE THEY?)

Verifier Neural NetworkConstraint:
desired properties

retrain

verify properties
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MOTIVATION
NEURAL NETWORKS

▶ A neural network is a function f : Rn → Rm parametrised by a set of weightsw
▶ A training dataset X is a set of pairs (x, y) consisting of an input x ∈ Rn and the

desired output y ∈ Rm

▶ Outputs y are generated from x by some function H : Rn → Rm

▶ x is drawn from some probability distribution over Rn

The goal of training is to use the dataset X to find weights w such that f approximates H.
This is done using a loss function L, that given a pair (x, y) calculates how much f (x) differs
from the desired output y.
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MOTIVATION
NEURAL NETWORKS - LOSS FUNCTIONS

A loss function L : Rn × Rm → R computes a penalty proportional to the difference
between the output of f on a training input x and a desired output y.

Example (Cross-entropy loss)
The cross-entropy loss Lce is defined as

Lce(x, y) = −
m∑

i=1
yi log(f (x)i) (1)
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EXAMPLE - CONSTRAINT

This is the type of proposition we could use:

Definition
Given constants ϵ, δ ∈ R, a function f is ϵ-δ-robust around a point x̂ ∈ Rn if:

∀x ∈ Rn : ||x− x̂|| ≤ ϵ ⇒ ||f (x) − f (x̂)|| ≤ δ
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EXAMPLE - DIFFERENTIABLE LOGIC

We define a very simple differentiable logic on a toy propositional language

a := a |p ≤ p| a ∧ a | a ⇒ a

based on Godel fuzzy logic [van Krieken 2022].

T(a1 ≤ a2) := 1 − max (tanh |T(a1) − T(a2)|, 0)

T(a1 ∧ a2) := min (T(a1),T(a2))

T(a1 ⇒ a2) := max (1 − T(a1), (T))
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EXAMPLE - TRANSLATION

T(∀x ∈ Rn : ||x− x̂|| ≤ ϵ ⇒ ||f (x) − f (x̂)|| ≤ δ)
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EXAMPLE - TRANSLATION

T(∀x ∈ Rn : ||x− x̂|| ≤ ϵ ⇒ ||f (x) − f (x̂)|| ≤ δ)

T(||x− x̂|| ≤ ϵ ⇒ ||f (x) − f (x̂)|| ≤ δ)

max(1 − T(||x− x̂||≤ϵ), ||T(f (x) − f (x̂)||≤δ))

max(max(tanh |T(||x− x̂|| − ϵ|, 0), 1 − max(tanh |T(||f (x) − f (x̂)|| − δ|, 0)
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DIFFERENT EXISTING DLS

▶ DL2 [Fisher et al. 2019]
▶ fuzzy DLs such as: Godel, Łukasiewicz, Yager, product and others [van Krieken et al.

2022]
▶ Signal Temporal Logic based DL [Varnai et al. 2020]
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PROPERTY LANGUAGE
This is only an example of the type of properties we may have to deal with. It underlined
some of the key features that need to be present in the DL for it to handle such constraints
such as:

▶ vectors

▶ quantifiers
▶ random variables

Example (Robustness)

∀x ∈ Rn : ||x− x̂|| ≤ ϵ ⇒ ||f (x) − f (x̂)|| ≤ δ
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SUMMARY OF THE PROBLEMS

1. Expressivity

2. Quantifiers (and reasoning about random variables)

3. Effect of DLs

4. Modular implementation
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WHAT DO WE WANT THEN?

1. Well-separated syntax and semantics.

2. DL general enough to cover all elements of syntax needed for machine learning
problems (such as vectors, quantifiers, random variables)

3. Language in which we can formalise and compare the DLs.

10



WHAT DO WE WANT THEN?

1. Well-separated syntax and semantics.

2. DL general enough to cover all elements of syntax needed for machine learning
problems (such as vectors, quantifiers, random variables)

3. Language in which we can formalise and compare the DLs.

10



WHAT DO WE WANT THEN?

1. Well-separated syntax and semantics.

2. DL general enough to cover all elements of syntax needed for machine learning
problems (such as vectors, quantifiers, random variables)

3. Language in which we can formalise and compare the DLs.

10



LOGIC OF DIFFERENTIABLE LOGICS (LDL)



SYNTAX



LDL - SYNTAX

⟨expr⟩ ∋ e ::= x | f | r ∈ R | i ∈ N | b ∈ B
| e e
| lam (x : τ ) . e
| let (x : τ ) = e in e
| ∧ | ∨ | ¬ | ⇒ | + | - | ×
| ̸= | ≤ | ≥ | < | > | ==
| [e, ..., e] | !
| ∀(x : τ ) . e | ∃(x : τ ) . e

⟨type⟩ ∋ τ ::= s → τ | s

⟨simple type⟩ ∋ s ::=
| Bool
| Real
| Vec n | Index n for n ∈ N
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SYNTAX - EXAMPLE

∀x ∈ Rn : ||x− x̂|| ≤ ϵ ⇒ ||f (x) − f (x̂)|| ≤ δ

Example (Encoding of robustness property in LDL)
Assuming a network f with input of size 784 (28 × 28 pixel images).

erobust = let (bounded : Vec 784 → Vec 784 → Real → Bool) =
lam (v : Vec 784) . lam (u : Vec 784) . lam (a : Real) .

∀ (i : Index 784) . let (d : Real) = v ! i − u ! i in − a ≤ d ∧ d ≤ a
in

lam (ϵ : Real) . lam (δ : Real) . lam (x̂ : Vec 784) .

∀ (x : Vec 784) . (bounded x x̂ ϵ) ⇒ (bounded (f x) (f x̂) δ)
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LDL - SYNTAX
TYPING CONTEXT

▶ A bound variable context, ∆
▶ A network context, Ξ

We can now move on to the typing relation to see how they are relevant.

13



LDL - TYPING RELATION

Ξ[f ] = (m, n)
Ξ, ∆ ⊩ f : Vec m → Vec n

(networkVar)
∆[x] = τ

Ξ, ∆ ⊩ x : τ
(boundVar)

Ξ, ∆ ⊩ ∧, ∨, ⇒: Bool → Bool → Bool (and)(or)(implies) Ξ, ∆ ⊩ +, × : Real → Real → Real (add)(mul)

Ξ, ∆ ⊩ e1 : Real . . . Ξ, ∆ ⊩ en : Real
Ξ, ∆ ⊩ [e1, ..., en] : Vec n (vec) Ξ, ∆ ⊩ ! : Vec n → Index n → Real (lookup)

Ξ, ∆[x → τ ] ⊩ e : Bool τ ̸= τ1 → τ2

Ξ, ∆ ⊩ ∀(x : τ ) . e : Bool
(forall)

Ξ, ∆[x → τ ] ⊩ e : Bool τ ̸= τ1 → τ2

Ξ, ∆ ⊩ ∃(x : τ ) . e : Bool
(exists)
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A REMINDER

Verifier Neural NetworkConstraint:
desired properties

retrain

verify properties
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SEMANTICS



SEMANTICS - OVERVIEW
Modular semantics
We have semantics modular on the choice of DL - part that is indeptndent of the DL and
a part depending on DL.

What do we need in them?

▶ semantics of types

⟨⟨Real⟩⟩ = R ⟨⟨Vec n⟩⟩ = ⟨⟨Real⟩⟩n

⟨⟨Index n⟩⟩ = {0, . . . , n − 1} ⟨⟨τ1 → τ2⟩⟩ = ⟨⟨τ2⟩⟩⟨⟨τ1⟩⟩

The semantics of Bool is dependant on the DL!
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SEMANTICS - OVERVIEW

Modular semantics
We have semantics modular on the choice of DL - part that is independent of the DL and
a part depending on DL.

What do we need in them?

▶ semantic context that allow us to work with neural networks (network context,
bound variable context and quantifier context)

JeKN,Γ,Q
L
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SEMANTIC CONTEXT

▶ A semantic network context N is a function that maps each network variable f ∈ Ξ,
such that Ξ[f ] = (m, n), to a function f : Rm → Rn, the actual (external)
implementation of the neural network.

▶ A semantic bound context Γ is a partial function that assigns each bound variable
x ∈ ∆ a semantic value in ⟨⟨∆(x)⟩⟩.

▶ Let q(e) be the set of infinitely quantified syntactic variables within expression e. A
semantic quantifier context Q is a function that maps each variable x in q(e) to a
random variable X, from which values for x are sampled from.
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SEMANTICS OF LDL INDEPENDENT OF THE CHOICE OF DL.

JxKN,Q,Γ
L = Γ[x] JfKN,Q,Γ

L = N[f ] JrKN,Q,Γ
L = r JiKN,Q,Γ

L = i

Jlam (x : τ ) . eKN,Q,Γ
L = λ(y : ⟨⟨τ⟩⟩).JeKN,Q,Γ[x→y]

L Je1 e2KN,Q,Γ
L = Je1KN,Q,Γ

L (Je2KN,Q,Γ
L )

Jlet (x : τ ) = e1 in e2KN,Q,Γ
L = Je2K

N,Q,Γ[x→Je1KN,Q,Γ
L ]

L J[e1, ..., en]KN,Q,Γ
L =< Je1KN,Q,Γ

L , . . . , JenKN,Q,Γ
L >

J!KN,Q,Γ
L = λ(a1 : ⟨⟨Vec n⟩⟩), (a2 : ⟨⟨Index n⟩⟩) .a1a2

J+KN,Q,Γ
L = λ(a1, a2 : ⟨⟨Real⟩⟩) .a1 + a2 J×KN,Q,Γ

L = λ(a1, a2 : ⟨⟨Real⟩⟩) .a1 × a2
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SEMANTICS DEPENDENT ON THE CHOICE OF DL.

Syntax Gödel interpretation

⟨⟨Bool⟩⟩G [0, 1]

J⊤KG 1

J⊥KG 0

J¬KG λa .1 − a

J∧KG λa1, a2 . min(a1, a2)

J∨KG λa1, a2 . max(a1, a2)

J⇒KG λa1, a2 . max(1 − a1, a2)

J==KG λa1, a2.1 − tanh |a1 − a2|

J≤KG λa1, a2 .1 − max(tanh |a1 − a2|, 0)
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RANDOM VARIABLES, QUANTIfiERS
AND VECTORS



QUANTIfiER SEMANTICS - BACKGROUND
A random variable X ranges over some domain D
Given a continuous random variable X with domain D, the probability distribution
function (PDF) pX : D → [0, 1] is a function that satisfies:

∫
D pX (x)dx = 1.

The probability distribution pX for X characterises how probable it is for a sample from it to
take a given value in the domain D.

Random vector variables X range over the domain D = D1 × . . . × Dn

Each element of the vector is assumed to be drawn from a random variable Xi over
domain Di. The joint PDF is a function pX1,...,Xn : D1 × . . . × Dn → [0, 1] that satisfies:∫

D1

. . .

∫
Dn

pX1,...,Xn (x1, . . . , xn)dxn . . . dx1 = 1
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QUANTIfiER SEMANTICS - BACKGROUND

Given a function g : Rn → R, a probability distribution pX over the random variable Xwith
domain D:

E[g(X)], the expected value for g : Rn → R over the random variable X, is defined as:

E[g(X)] =
∫
D

pX(x)g(x)dx. (2)
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QUANTIfiER SEMANTICS

For a function g : Rn → R, we say that xmin is the global minimum if g(xmin) ≤ g(y) for any
y on which g is defined. We define a γ-ball around a point x as follows:
Bγ
x = {y | ||x− y|| ≤ γ}. We call the expectation

Emin[g(X)] = lim
γ→0

∫
x∈Bγ

xmin

pX(x)g(x)dx

minimised expected value for g (over the random variable X).
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QUANTIfiER SEMANTICS

This gives us interpretation of universal and existential quantifiers as minimised (or
maximised) expected values for the interpretation of their body:

J∀x : τ. eKN,Q,Γ
L = Emin[(λy.JeKN,Q,Γ[x→y]

L )(Q[x])]

J∃x : τ. eKN,Q,Γ
L = Emax[(λy.JeKN,Q,Γ[x→y]

L )(Q[x])]
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EXAMPLE - ROBUSTNESS

Robustness:
∀x ∈ Rn : ||x− x̂|| ≤ ϵ ⇒ ||f (x) − f (x̂)|| ≤ δ

In LDL syntax:
Jlam (ϵ : Real) . lam (δ : Real) . lam (x̂ : Vec 784) .

∀ (x : Vec 784) . (bounded x x̂ ϵ) ⇒ (bounded (f x) (f x̂) δ)KG

Let us now show the process of interpreting a property using LDL. For simplicity instead of
defining the function bounded in a let expression we will assume it is already defined.
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EXAMPLE - ROBUSTNESS

Before:
Jlam (ϵ : Real) . lam (δ : Real) . lam (x̂ : Vec 784) .

∀ (x : Vec 784) . (bounded x x̂ ϵ) ⇒ (bounded (f x) (f x̂) δ)KG

Now:
λ (ϵ : R) . λ (δ : R) . λ (x̂ : R784) .

J∀ (x : Vec 784) . (bounded x x̂ ϵ) ⇒ (bounded (f x) (f x̂) δ)KG
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EXAMPLE - ROBUSTNESS

Before:

λ (ϵ : R) . λ (δ : R) . λ (x̂ : R784) .

J∀ (x : Vec 784) . (bounded x x̂ ϵ) ⇒ (bounded (f x) (f x̂) δ)KG

Now:

λ (ϵ : R) . λ (δ : R) . λ (x̂ : R784) .

Emin( [λx : R784 .J(bounded x x̂ ϵ) ⇒ (bounded (f x) (f x̂) δ)KG)(Q[x])]
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EXAMPLE - ROBUSTNESS
Before:

λ (ϵ : R) . λ (δ : R) . λ (x̂ : R784) .

Emin [(λx : R784 .J(bounded x x̂ ϵ) ⇒ (bounded (f x) (f x̂) δ)KG)(Q[x])]

Now:

λ (ϵ : R) . λ (δ : R) . λ (x̂ : R784) .

Emin [(λx : R784 . max(1 − Jbounded x x̂ ϵKG, Jbounded (f x) (f x̂) δKG))(Q[x])]

The next step would be to interpret the bounded function analogously.
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PROPERTIES



MOTIVATION

Now that we have a way to express all the DLs we can reason about their properties - both
logical and geometric.

The most important logical properties are soundness and completness.

Soundness

We will say that a DL is sound, if given a formula that it interprets as J⊤KN,Q,Γ
L this formula

is provable in LJ[Gentzen 1969].

Theorem (Soundness of Gödel DL)

Given a formula e, for any contexts N, Γ, Q if JeKN,Q,Γ
G = J⊤KN,Q,Γ

G then ⊢ e.
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WHAT ELSE IS IN THE PAPER?
(BUT DID NOT fiT HERE)

▶ more DLs expressible in LDL - and the analysis of the differences between them

▶ comparison of geometric and logical properties of all the LDLs
▶ proofs of soundness (or lack thereof) for other DLs
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COMPARISON

Properties: DL2 Gödel Łukasiewicz Yager Product STL

Weak Smoothness yes* no no no yes* yes
Shadow-lifting yes no no no yes yes
Scale invariance yes yes no no no yes

Idempotence no yes no no no yes
Commutativity yes yes yes yes yes yes
Associativity yes yes yes yes yes no
Quantifier commutativity no yes no no no no
Soundness yes yes no no yes no
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CONCLUSIONS



LOGIC FOR DIFFERENTIABLE LOGICS

We created a meta-DL - Logic for Differentiable Logics (LDL).

▶ On the syntactic side it is a typed first-order language with negation and universal
and existential quantification that can express properties of functions and vectors.

▶ On the semantic side LDL is defined to be parametric on the choice of domain and
interpretation of logical connectives.

▶ This structure will allow for a modular implementation of LDL as an extension of
Vehicle [Kokke et al. 2023].
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FUTURE WORK

▶ Finding novel ways of defining quantifiers that commute with DL connectives.
▶ Investigating other ways of stating soundness that correspond better to DLs.
▶ Defining a new DL that has better properties - and is both adequate and complete

(possibly using equality-up-to-epsilon or some ideas from Lawvere Quantale [Bacci et
al. 2023])
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QUESTIONS?
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