
Checking the Checkers:
Neural Network Verification Benchmarks

with Known Ground Truth

Edoardo Manino

The University of Manchester

26 October 2023

1 / 29



The abstraction ladder (1)

The “classic ML” mindset
▶ Define a neural net as f : Rn → R

m

▶ Gradient descent, auto differentiation

▶ Data manifold, regularizers, . . .

What’s the implicit assumption?

▶ We live in a mathematician’s world

▶ At a very high level of abstraction

▶ And operations have infinite precision

Very effective, most of the time

2 / 29



The abstraction ladder (2)

Quantisation efforts

▶ 16-bit floating point

▶ 16-bit, 8-bit, 4-bit integers

▶ Binarized neural networks

Parallel execution
▶ GPU, SIMD instructions, TPU, FPGAs

▶ Distributed/federated learning

What’s the implicit assumption?

▶ We make a lot of optimisations

▶ But the result doesn’t really change

3 / 29



The abstraction ladder (3)

The software safety mindset

▶ Buffer overflow, division by zero

▶ Data race, deadlock, use-after-free

▶ Infinite loops, side effects

What’s the implicit assumption

▶ Every innocent bug

▶ Can introduce a vulnerability

Just a problem for library makers?

4 / 29



The abstraction ladder (4)

Don’t forget the hardware!

5 / 29



6 / 29



Implementation effects (1)

Can we expect consistent behaviour across devices?

▶ Cidon et al., Characterizing and taming model instability
across edge devices, 2021

▶ Wang et al, SysNoise: exploring and benchmarking
trainin-deployment system inconsistency, 2023

Many low-level sources of noise!

▶ Pre-processing: .jpg→tensor (iDCT, interpolation, colour)

▶ Model inference: convolutions, upsampling, floats, quantize

▶ Post-processing: tensor→bounding box (rounding coordinates)

Up to 6% accuracy fluctuation1

1Cidon [2021] runs MobileNetV2 on photos taken from five different phones.
7 / 29



Implementation effects (2)

Can we trust NN verifiers?
▶ VNN-COMP compares the best neural network verifiers

▶ Let’s reproduce one of their results!

Benchmark: reach prob density/robot 11

▶ A ReLU network with architecture 5× 64× 64× 64× 5

▶ Input assumption: x0 ∈ [−1.8,−1.2] ∧ x1 ∈ [−1.8,−1.2]. . .

▶ Output assertion: y0 ≥ 0.27 ∧ y1 ∈ [−0.17, 0.17]. . .

Five tools return a counterexample!

▶ αβ-CROWN, Marabou, nnenum, VeriNet, Peregrinn

But none of them violates the output assertion2

2With the plain C code from onnx2c and the MinGW-w64 compiler.
8 / 29



9 / 29



Software verification

Advantages

▶ Code is a formal specification

▶ (just add safety properties)

▶ Decades of SV research

▶ Very sophisticated tools

Disadvantages

▶ Too many implementation details

▶ Memory model, parallelism

▶ Hard to scale to large instances

Is it a viable approach?

10 / 29



11 / 29



NeuroCodeBench (1)

Benchmarking goals

▶ Representativeness → realistic use cases

▶ Compatibility → SV likes plain C code

▶ Variety → from small to “large” instances

▶ Correctness → known ground truth

Our work is inspired by

▶ Microcontroller software

Short paper available!

▶ Manino et al., NeuroCodeBench: a plain C neural network
benchmark for software verification, 2023

▶ https://arxiv.org/abs/2309.03617

12 / 29

https://arxiv.org/abs/2309.03617


NeuroCodeBench (2)

Benchmark Category Safe Unsafe Ground Truth

math functions 33 11 A Priori
activation functions 40 16 A Priori

hopfield nets 47 33 A Priori
poly approx 48 48 Brute Force

reach prob density 22 13 VNN-COMP’22
reinforcement learning 103 193 VNN-COMP’22

Total 293 314

Table: Overview of NeuroCodeBench. The “Unsafe” column comprises
all properties for which a counterexample exists. The “Ground Truth”
column reports the source of our verdicts.

13 / 29



14 / 29



Floating-point activations (1)

How to implement the sigmoid function?

▶ s(float x){return 1.0f / (1.0f + expf(-x));}
▶ s(float x){return 0.5f * tanhf(0.5f * x) + 0.5f;}

Let’s compare them:

▶ Which one is faster?

▶ Which one is more precise?

▶ What happens for x > 88.0f?

15 / 29



Floating-point activations (2)

Implementing the softsign function:

▶ s(float x){return x / (1.0f + fabsf(x));}

Tricky questions:

▶ What happens for x = -Inf?

▶ Is our implementation always non-decreasing?

16 / 29



17 / 29



NeuroCodeBench (3)

Functions from math.h

▶ expf, expm1f, logf, log1pf

▶ acosf, asinf, atanhf, cosf, sinf, tanhf

▶ erff, fabsf, fmaxf, sqrtf

Activation functions
▶ Elu, Gelu, Logistic, ReLU, Softmax,

Softplus, Softsign, TanH

Safety properties (Examples)

▶ Output bounds: expf (x) ≥ 1 + x

▶ Periodicity: sinf (x) = sinf (x + 2π)

▶ Symmetry: tanhf (x) = −tanhf (−x)

▶ Inversion: expf (logpf (x)) = x

Benchmark Category

math functions

activation functions

hopfield nets

poly approx

reach prob density

reinforcement learning

18 / 29



NeuroCodeBench (4)

Classic Hopfield Networks

▶ Recurrent architecture

▶ Hard-coded Hebbian weights

▶ Error-correcting behaviour

Our idea
▶ Reconstruct a single x = (1, 1, . . . , 1)

▶ Use either softsign or tanh activations

▶ Vary code width and num of iterations

Safety properties

▶ Make xi ∈ [−1,+1] for i < half width

▶ Can the network reach x = (1, . . . , 1)?

Benchmark Category

math functions

activation functions

hopfield nets

poly approx

reach prob density

reinforcement learning

19 / 29



NeuroCodeBench (5)

Transfer function approximation

▶ Very common in engineering

▶ Approximate electrical equivalent

Our idea
▶ Fourth-order oscillating polynomial

▶ ReLUs, 1–4 layers, 16–1024 width

Safety properties

▶ Robustness of approximation

▶ |network(x)−poly(x)| ≤ ϵ

▶ for x around the worst-case

Benchmark Category

math functions

activation functions

hopfield nets

poly approx

reach prob density

reinforcement learning

20 / 29



NeuroCodeBench (6)

Importing VNN-COMP benchmarks

▶ Choose categories from 2022 edition

▶ with very small neural networks

Converting to plain C code

▶ Turn ONNX into plain C with onnx2c

▶ Microcontroller-style minimalism

Safety properties

▶ Keep the original VNN-LIB properties

▶ Encode them as assert/assume

▶ Check validity of counterexamples

Benchmark Category

math functions

activation functions

hopfield nets

poly approx

reach prob density

reinforcement learning

21 / 29



NeuroCodeBench (7)

Benchmark Category Safe Unsafe Ground Truth

math functions 33 11 A Priori
activation functions 40 16 A Priori

hopfield nets 47 33 A Priori
poly approx 48 48 Brute Force

reach prob density 22 13 VNN-COMP’22
reinforcement learning 103 193 VNN-COMP’22

Total 293 314

Table: Overview of NeuroCodeBench. The “Unsafe” column comprises
all properties for which a counterexample exists. The “Ground Truth”
column reports the source of our verdicts.

22 / 29



23 / 29



Experimental results (1)

CBMC ESBMC CPAChecker PeSCo UAtomizer Pinaka
0

200

400

600

111

255

30

224

7
36

420

175

508

0

594

514

76

177

69

383

6
57

#
v
er
d
ic
ts

Correct Unknown Incorrect

Figure: Results of state-of-the-art software verifiers after 900 seconds.

Experiments with off-the-shelf verifiers

▶ We pick the top scoring tools from SV-COMP 2022

▶ We keep the same settings of the reachability category

▶ Veriety of techniques: BMC, falsification, portfolios

24 / 29



Experimental results (2)

CBMC ESBMC CPAChecker PeSCo UAtomizer Pinaka
0

200

400

600

111

255

30

224

7 36

420

175

508

0

594
514

76
177

69

383

6
57#

v
er
d
ic
ts

Correct Unknown Incorrect

Reviewer 2 Must Be Stopped!

▶ ESBMC found 255 true properties, while PeSCo found 224.

▶ So, who is right? This odd behavior *must* be discussed.

Preliminary Analysis

▶ No support of mathematical libraries → incorrect results

▶ Cannot scale to large programs → unknown result (timeout)

▶ Other hidden bugs (floats, multi-dimensional arrays)?

25 / 29



26 / 29



Future work

Reproduce

▶ Submit NeuroCodeBench to SV-COMP 2023

▶ Experiments run by independent team

▶ Tool authors have a chance to fix bugs

Improve

▶ More benchmarks, neural networks, use cases

▶ Operational models to support math.h

Generalise
▶ If verifying neural code is too challenging

▶ Can we reason about sets of implementations?

27 / 29



28 / 29



Floating-point activations (3)

float softsign(float x)

{ return x / (1.0f + fabsf(x)); }

Is our implementation always non-decreasing? No.3

▶ x1 = 15.000012397766113 ∧ x2 = 15.000021934509277

▶ softsign(x1) = 0.93750011920928955

▶ softsign(x2) = 0.93750000000000000

▶ x2 > x1 but softsign(x2) < softsign(x1)!

▶ It decreases by ≈ 0.00000012

3MinGW-w64 with options -m64 -O2 and MUSL implementation of math.h.
29 / 29


