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Credit to Antonia Creswell (https://neurips.cc/virtual/2021/22954) for this image
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The Al Landscape

General
CC» Deep learning
e Input: (encoded) raw inputs*
o Symbolic Al Function: weakly structured
il) Input: highly structured Interpretability
- Function: highly structured —
'®) — Data Efficiency
har Interpretability
O — Generalisation
% Data Efficiency
L — Universality
Generalisation
_ _ Extrapolation
Universality
Predefined Extrapolation

Predefined Input Representation General

Credit to Antonia Creswell (https://neurips.cc/virtual/2021/22954) for this image
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(Deep) Learning Machines
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Thinking beyond matrix
multiplication
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Learning machines with architectural constraints E i

General
Featurewise Sort Pooling ‘
- Input: set of vectors
- Output: vector
é Function: sorting + freeform
qv
3 Deep Set Prediction Nets
— Input: any tensor
O Output: set of vectors
O Function: optimisation + freeform
-
LE Autotracing Autoencoders
Neural Division Modules Input: image (Tensor)
Input: reals (fp32) Output: image + set or sequence of vectors
Output: real(s) (fp32) Function: freeform + rasteriser
Predefined Function: exp gated log-sum cosine
Predefined Input Representation General
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Autotracing Autoencoders

Daniela Mihai and Jonathon Hare (2021) Learning to Draw: Emergent Communication through Sketching. In Advances in Neural Information Processing Systems 34. vol. 34,
Neural Information Processing Systems.

Daniela Mihai and Jonathon Hare (2021) Differentiable Drawing and Sketching. arxiv:2103.16194
Daniela Mihai and Jonathon Hare (2021) Perceptions. The Al Art Gallery: NeurlPS Workshop on Machine Learning for Creativity and Design 2021.

Daniela Mihai and Jonathon Hare (2021) Physically Embodied Deep Image Optimisation. 5th Workshop on Machine Learning for Creativity and Design (ML4CD 2021) of the
Neural Information Processing Systems (NeurlPS), Virtual. 4 pp .

Daniela Mihai and Jonathon Hare (2021) Shared visual representations of drawing for communication: how do different biases affect human interpretability and intent? In Shared
Visual Representations in Human and Machine Intelligence: 2021 NeurlPS Workshop. 10 pp .
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Structured Image Generation

Machine vs human

Problem: state of the art image generators use very unnatural processes

Humans
generate
images in a
very different
way - using
tools to draw |
strokes

https://huggingface.co/blog/annotated-diffusion https://giphy.com/gifs/sketch-sketching-desenhar-4fxoQZNYnA8hsZzRNa
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Structured line drawing
Differentiable rasterisation D0 0s) Primitives |
line(0.5,0,0,0) \__/
i _ _ _ bezier(-O.S,O,-O.S,—O.S,0.5,—0.5,0.5.0)
» Solution: design an architecture that is
constrained to draw a stroke and another that ﬁiﬁi‘ﬁimﬂ
can compose strokes seqguentially “ , K
_ _ ] Distance Differentiable
* Function needs to be incorporated in larger Transforms Composition

(deep) learning system -> must be
differentiable

Standard rasterisation techniques are not
differentiable

e \We need a differentiable relaxation of
rasterisation...
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L if () 1.5—p+|p-=-05] if|p—-05|=n
pl=n ] L
s P) = ) . — [p—=0. flp—0.5] =
f(n; p) {0 Stherwise f(n;p) 05+p—[p—-05] if [p 951 n
0 otherwise .

Image Composition:

cdV 1@, I =IDVvIDv . vI®
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L if () 1.5—p+|p—-05] if|p—-05]|=n
pl=n ] L
f(n;p) {0 Stherwise f(n;p) 05+p—[p—-05] if [p 95] n
0 otherwise .

No good gradient

Image Composition:

No good gradient

cdV 1@, ") =IDvIDv . vI®

No good gradient
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—@ i —>= | i i —@ i —>= | i i @ i —>=

_ _ I =

L if () 1.5—p+|p—-05] if|p—-0.5]|=n
: p— “p — — [p — If [n — — : — —_— - — 2
J(n;p) {O Stherwise J(n;p) 0.5+p—[p—0.5] if[p 9.5] n f(n; p) = exp(—d-(n,p — 0.5)/6%)
0 otherwise .

No good gradient

Image Composition:

No good gradient Good gradient

0 AR SO LY (OAVE (ORVERIRVE 4D

No good gradient

AV I, Wy =1 - H(l 1)

Good gradient _

so ftor
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Autotracing Autoencoders

Learning to convert drawings to vectors
MSE LOSS

i
N

Latent Representation Primitive Representation —_ d-‘

o
Differentiable
Rasteriser
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(b) Scaled MNIST Dataset (baseline unencoded acc. 98.58%).

(a) MNIST Test Dataset (baseline unencoded acc. 98.60%).
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Generating Sets

Yan Zhang, Jonathon Hare and Adam Prugel-Bennett (2019) Deep Set Prediction Networks. In Advances in Neural Information Processing Systems 32. vol. 32, Neural
Information Processing Systems.

Yan Zhang and Jonathon Hare and Adam Prlugel-Bennett (2020) FSPool: Learning Set Representations with Featurewise Sort Pooling. International Conference on Learning
Representations.

Yan Zhang, Jonathon Hare and Adam Prugel-Bennett (2019) FSPool: Learning set representations with featurewise sort pooling. Sets & Partitions: NeurlPS 2019 Workshop
Yan Zhang, Jonathon Hare and Adam Prugel-Bennett (2019) Deep Set Prediction Networks. Sets & Partitions: NeurlPS 2019 Workshop
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Predicting sets

Learning unordered things with an ordered function is hard

 Problem: turn a vector (or more generally tensor) into a set of vectors
* Applications: predicting objects in images, molecule generation, ...

 But, MLPs have ordered outputs and sets are by definition unordered
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Reversing an invariant encoder
Deep Set Prediction Networks

* Solution: need to define a function (or procedure) that is unordered

* Observation: gradient of a permutation-invariant encoder (set to vector) with
respect to the input are permutation equivariant

| | 0loss
. l.e. gradients do not depend on order!

oset

* Implication: to decode a feature vector into a set, we can use gradient descent to
find a set that encodes to that feature vector

 We can define a procedure that iteratively follows gradients in the forward pass
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Autoencoding sets

Input Target

MSE

\Japoaua /
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Object detection

Input \ Target
X | 512d _—
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= MSE loss —I<— S
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Object detection

Target

Input
\
(;DU 512d (
% 7!—MSE loss—l<— %
& o
_—
Bounding box prediction AP, APy, APs,: APgs APy,
MLP baseline 00.3:0: 94.0:9 57.94 070> 0.0:00
RNN baseline 00.4i0>: 94.9:0 65.0:05 2400 0.000

Ours (train 10 steps, eval 10 steps) 98.8:0; 94.3:s 85710 34557 2.9
Ours (train 10 steps, eval 20 steps) 99.8..c 98.7.. 86.2... 24.3:s0 1.Luos
Ours (train 10 steps, eval 30 steps) 99.8... 96.7-.. 75.5:w5 174w 0.9
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Object and attribute prediction

Object attribute prediction AP AP, APo:  APgoc APgios

MLP baseline 3.6i05 1.5:0. 0.8 0.2:0: 0.0:00

RNN baseline 4,09 182 0.9:%5 0.2:0: 0.0:00

Ours (train 10 steps, eval 10 steps) 72.8.:; 59.2.s 39.0.u 12405 1.3
Ours (train 10 steps, eval 20 steps) 84.0..; 80.0.s 57.0:2 16.6.00 1.6.05
Ours (train 10 steps, eval 30 steps) 85.2... 811.. 47.4.06 10.850 0.6

Input Step 5 Step 10 Step 20 Target

X, V, Z = (-0.14, 116, 3.57) X,V,z=(-2.33,-2.41,073) X V,z=(-2.33,-2.42,0.78) XV, z=(-2.42, -2.40, 0.70)
large purple rubber sphere large yellow metal cube large yellow metal cube large yellow metal cube

X, Y, Z = (0.01, 012, 3.42) X, V, Z = (-1.20, 1.27, 0.67) X, VY, Z = (-1.21, 1.20, 0.65) X, V, Z = (-118, 1.25, 0.70)
large gray metal cube large purple rubber sphere large purple rubber sphere large purple rubber sphere

X, V, z = (0.67, 0.65, 3.38) X,V,z=(-0.96,2.54, 0.36) XV, z=(-0.96,2.59,0.36) XV, z=(-1.02, 2.61, 0.35)
small purple metal cube  small gray rubber sphere  small gray rubber sphere  small gray rubber sphere

X, V, Z = (0.67, 114, 2.96) X, V, Z = (1.61, 1.57, 0.36) X, V, z = (1.58, 1.62, 0.38) X, V, Z = (1.74, 1.53, 0.35)
small purple rubber sphere small yellow metal cube  small purple metal cube  small purple metal cube
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Where next?
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The Al Landscape

General

Function Learning

Predefined Symbolic Al
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Credit to Antonia Creswell (https://neurips.cc/virtual/2021/22954) for this image
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What do we want from learning Al?

 (Good generalisation
 |ID/OQOD
 Good robustness

* Not falling for trivial adversarial
examples

* (Good explainability

 Some understanding of why a
machine is making a decision

 Well calibrated confidences
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What do we want from learning Al?

* (Good generalisation

« ID/0OO0OD

How do we measure
these?

e (Good robustness

* Not falling for trivial adversarial
examples Many (most?) current

measures are flawed

* Good explainability

 Some understanding of why a
machine is making a decision

 Well calibrated confidences
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What do we want from learning Al?

 Good generalisation The importance of feature

e ID/OOD combinations - (highly nonlinear)
decision rules integrating information
* (Good robustness from different sources

* Not falling for trivial adversarial Cue combination (cognitive sciences)

examples Disentanglement and compositionality
. Good explainability [in a semantic sense]
“Decision Decompositionality”
* Some understanding of why a “More distributed features”
machine is making a decision Entanglement [in a geometric sense]
« Well calibrated confidences Function re-use
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What do we want from learning Al?

* (Good generalisation My take:
e ID/OOD :
We need to architecture
 (Good robustness functions to achieve
| o | these goals
* Not falling for trivial adversarial
examples Playing with losses can
« Good explainability help, but will only get
us so far - our models
 Some understanding of why a might learn, but maybe

direction

 Well calibrated confidences

Incorporating constraints in learning machines through model architecture Jonathon Hare
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Any Questions?



