Jonathon Hare, 27 October 2023

This presentation wouldn't be possible without:

Daniela Mihai

Ethan Harris

Antonia Marcu

(And Eduardo Manino for taking the photo!)

Yan Zhang

Input Representation

General

Credit to Antonia Creswell (https://neurips.cc/virtual/2021/22954) for this image

	r	
		-

The Al Landscape

Incorporating constraints in learning machines through model architecture

Deep learning
Input: (encode J raw inputs*
Function: weakly structuredInterpretabilityImage: StructuredInterpretabilityImage: StructuredData EfficiencyImage: StructuredGeneralisationImage: StructuredUniversalityImage: StructuredExtrapolationImage: Structured

Input Representation

General

Credit to Antonia Creswell (https://neurips.cc/virtual/2021/22954) for this image

	r	
		-

<u>Jonathon Hare</u>

General

Jonathon Hare

RNNs

. . .

General

Thinking beyond matrix multiplication

Learning machines with architectural constraints

Incorporating constraints in learning machines through model architecture

Input: set of vectors Output: vector

> Deep Set Prediction Nets Input: any tensor Output: set of vectors Function: optimisation + freeform

Autotracing Autoencoders Input: image (Tensor) Output: image + set or sequence of vectors Function: freeform + rasteriser

Input Representation

University of Southampt

General

	r	

Autotracing Autoencoders

Daniela Mihai and Jonathon Hare (2021) Learning to Draw: Emergent Communication through Sketching. In Advances in Neural Information Processing Systems 34. vol. 34, Neural Information Processing Systems.

Daniela Mihai and Jonathon Hare (2021) Differentiable Drawing and Sketching. arxiv:2103.16194

Daniela Mihai and Jonathon Hare (2021) Perceptions. The AI Art Gallery: NeurIPS Workshop on Machine Learning for Creativity and Design 2021.

Daniela Mihai and Jonathon Hare (2021) Physically Embodied Deep Image Optimisation. 5th Workshop on Machine Learning for Creativity and Design (ML4CD 2021) of the Neural Information Processing Systems (NeurIPS), Virtual. 4 pp.

Daniela Mihai and Jonathon Hare (2021) Shared visual representations of drawing for communication: how do different biases affect human interpretability and intent? In Shared Visual Representations in Human and Machine Intelligence: 2021 NeurIPS Workshop. 10 pp.

Structured Image Generation Machine vs human

Image generation in deep learning involves functions that operate on all pixels simultaneously

https://huggingface.co/blog/annotated-diffusion

Incorporating constraints in learning machines through model architecture

Problem: state of the art image generators use very unnatural processes

Humans generate images in a very different way - using tools to draw strokes

https://giphy.com/gifs/sketch-sketching-desenhar-4fxoQZNYnA8hsZzRNa

	r	

Structured line drawing **Differentiable rasterisation**

- Solution: design an architecture that is constrained to draw a stroke and another that can compose strokes sequentially
 - Function needs to be incorporated in larger (deep) learning system -> must be differentiable
 - Standard rasterisation techniques are not differentiable
 - We need a differentiable relaxation of rasterisation...

Incorporating constraints in learning machines through model architecture

Rasterisation (1d shown):

$$f(n;p) = \begin{cases} 1 & \text{if } \lfloor p \rfloor = n \\ 0 & \text{otherwise} \end{cases}.$$

$$f(n;p) = \begin{cases} 1.5 - p + \lfloor \\ 0.5 + p - \lfloor \\ 0 \end{cases}$$

Image Composition:

$$c(I^{(1)}, I^{(2)}, \dots, I^{(n)})$$

Incorporating constraints in learning machines through model architecture

 $= \boldsymbol{I}^{(1)} \vee \boldsymbol{I}^{(2)} \vee \ldots \vee \boldsymbol{I}^{(n)}$

	r	

Rasterisation (1d shown):

$$f(n;p) = \begin{cases} 1 & \text{if } \lfloor p \rfloor = n \\ 0 & \text{otherwise} \end{cases}$$

No good gradient

Image Composition:

$$c(I^{(1)}, I^{(2)}, \dots, I^{(n)}) =$$

Incorporating constraints in learning machines through model architecture

	r	

Rasterisation (1d shown):

$$f(n;p) = \begin{cases} 1 & \text{if } \lfloor p \rfloor = n \\ 0 & \text{otherwise} \end{cases}.$$

No good gradient

Image Composition:

$$c(I^{(1)}, I^{(2)}, \dots, I^{(n)}) =$$

No go
 $c_{softor}(I^{(1)}, I^{(2)}, \dots, I^{(n)})$

Incorporating constraints in learning machines through model architecture

$$f(n;p) = \exp(-d^2(n,p-0.5))$$

Good gradient

Autotracing Autoencoders Learning to convert drawings to vectors

Incorporating constraints in learning machines through model architecture

MSE LOSS

Ч o 4/ チフシチタ ろんてスコ 5 \ 2 4 3 Х 7 4 ລ - 7 Ч 6 3 6 9 3 1 6 % 3 1 (a) Test Samples (b) Lines(L=5)7 L J 47 149 Z Ę ч 6 1 5 0 0 0 ч 4 4 ч 41957893 41957893 D171297 D91732

	r	
		_

Generating Sets

Yan Zhang, Jonathon Hare and Adam Prugel-Bennett (2019) Deep Set Prediction Networks. In Advances in Neural Information Processing Systems 32. vol. 32, Neural Information Processing Systems.

Yan Zhang and Jonathon Hare and Adam Prügel-Bennett (2020) FSPool: Learning Set Representations with Featurewise Sort Pooling. International Conference on Learning Representations.

Yan Zhang, Jonathon Hare and Adam Prugel-Bennett (2019) FSPool: Learning set representations with featurewise sort pooling. Sets & Partitions: NeurIPS 2019 Workshop

Yan Zhang, Jonathon Hare and Adam Prugel-Bennett (2019) Deep Set Prediction Networks. Sets & Partitions: NeurIPS 2019 Workshop

Predicting sets Learning unordered things with an ordered function is hard

- **Problem:** turn a vector (or more generally tensor) into a set of vectors
 - Applications: predicting objects in images, molecule generation, ...
 - But, MLPs have ordered outputs and sets are by definition unordered

Incorporating constraints in learning machines through model architecture

	r	

Reversing an invariant encoder Deep Set Prediction Networks

- Solution: need to define a function (or procedure) that is *unordered*
 - **Observation**: gradient of a permutation-invariant encoder (set to vector) with respect to the input are permutation equivariant

, i.e. gradients
$$\frac{\delta loss}{\delta set}$$
 do not depend

- Implication: to decode a feature vector into a set, we can use gradient descent to find a set that encodes to that feature vector
 - We can define a procedure that iteratively follows gradients in the forward pass

Incorporating constraints in learning machines through model architecture

d on order!

	r	

Autoencoding sets

Incorporating constraints in learning machines through model architecture

	r	

Object detection

Incorporating constraints in learning machines through model architecture

Target

	r	

Object detection Input 512d ResNet34

Bounding box prediction

MLP baseline **RNN** baseline **Ours** (train 10 steps, eval 10 steps) $98.8_{\pm 0.3}$ **Ours** (train 10 steps, eval 20 steps) **Ours** (train 10 steps, eval 30 steps)

Incorporating constraints in learning machines through model architecture

	r	

Object and attribute prediction

Object attribute prediction

MLP baseline **RNN** baseline **Ours** (train 10 steps, eval 10 steps) **Ours** (train 10 steps, eval 20 steps) Ours (train 10 steps, eval 30 steps)

Incorporating constraints in learning machines through model architecture

	AP_∞	AP ₁	AP _{0.5}	AP _{0.25}	AP _{0.125}
	$3.6 \scriptstyle \pm 0.5$	1.5 ±0.4	$\textbf{0.8}_{\pm \text{o.3}}$	0.2 ±0.1	0.0 ±0.0
	4.0 ±1.9	$\textbf{1.8}_{\pm 1.2}$	0.9 ±0.5	0.2 ±0.1	0.0 ±0.0
)	$\textbf{72.8}_{\pm 2.3}$	$59.2 \scriptscriptstyle \pm 2.8$	39.0 _{±4.4}	12.4 ±2.5	1.3 ±0.4
)	$84.0{\scriptstyle \pm 4.5}$	80.0 _{±4.9}	57.0 ±12.1	16.6 ±9.0	1.6 ±0.9
)	85.2 _{±4.8}	81.1 _{±5.2}	47.4 ±17.6	$\textbf{10.8}_{\pm 9.0}$	0.6 ±0.7

Step 10	Step 20	Target
x, y, z = (-2.33, -2.41, 0.73)	x, y, z = (-2.33, -2.42, 0.78)	x, y, z = (-2.42, -2.40, 0.70)
large yellow metal cube	large yellow metal cube	large yellow metal cube
x, y, z = (-1.20, 1.27, 0.67)	x, y, z = (-1.21, 1.20, 0.65)	x, y, z = (-1.18, 1.25, 0.70)
large purple rubber sphere	large purple rubber sphere	large purple rubber sphere
x, y, z = (-0.96, 2.54, 0.36)	x, y, z = (-0.96, 2.59, 0.36)	x, y, z = (-1.02, 2.61, 0.35)
small gray rubber sphere	small gray rubber sphere	small gray rubber sphere
x, y, z = (1.61, 1.57, 0.36)	x, y, z = (1.58, 1.62, 0.38)	x, y, z = (1.74, 1.53, 0.35)
small <mark>yellow</mark> metal cube	small purple metal cube	small purple metal cube

	r	

Where next?

The Al Landscape

Incorporating constraints in learning machines through model architecture

Credit to Antonia Creswell (https://neurips.cc/virtual/2021/22954) for this image

Jonathon Hare

	r	

this image

What do we want from learning AI?

- Good generalisation
 - ID / OOD
- Good robustness
 - Not falling for trivial adversarial examples
- Good explainability
 - Some understanding of why a machine is making a decision
 - Well calibrated confidences

Incorporating constraints in learning machines through model architecture

	r	

What do we want from learning AI?

- Good generalisation
 - ID / OOD
- Good robustness
 - Not falling for trivial adversarial examples
- Good explainability
 - Some understanding of why a machine is making a decision
 - Well calibrated confidences

Incorporating constraints in learning machines through model architecture

How do we measure these?

Many (most?) current measures are flawed

	r	

What do we want from learning AI?

- Good generalisation
 - ID / OOD
- Good robustness
 - Not falling for trivial adversarial examples
- Good explainability
 - Some understanding of why a machine is making a decision
 - Well calibrated confidences

Incorporating constraints in learning machines through model architecture

The importance of feature combinations - (highly nonlinear) decision rules integrating information from different sources

Cue combination (cognitive sciences) **Disentanglement and compositionality** [in a semantic sense] "Decision Decompositionality" "More distributed features" Entanglement [in a geometric sense] **Function re-use**

What do we want from learning Al?

- Good generalisation
 - ID / OOD
- Good robustness
 - Not falling for trivial adversarial examples
- Good explainability
 - Some understanding of why a machine is making a decision
 - Well calibrated confidences

Incorporating constraints in learning machines through model architecture

My take:

We need to architecture functions to achieve these goals

Playing with losses can help, but will only get us so far - our models might learn, but maybe not in the intended direction

	r	

