
Jonathon Hare, 27 October 2023

Incorporating constraints in
learning machines through
model architecture

Ethan

Harris

Antonia

Marcu

Daniela

Mihai

Yan

Zhang

(And Eduardo Manino for taking the photo!)

This presentation wouldn’t be possible without:

Bhumika

Mistry

Incorporating constraints in learning machines through model architecture Jonathon Hare

The AI Landscape

Input Representation

Fu
nc

tio
n

Le
ar

ni
ng

Credit to Antonia Creswell (https://neurips.cc/virtual/2021/22954) for this image

Predefined

Predefined

General

General

Symbolic AI

Deep Learning

https://neurips.cc/virtual/2021/22954

Incorporating constraints in learning machines through model architecture Jonathon Hare

The AI Landscape

Input Representation

Fu
nc

tio
n

Le
ar

ni
ng

Credit to Antonia Creswell (https://neurips.cc/virtual/2021/22954) for this image

Predefined

Predefined

General

General

Symbolic AI

Deep Learning

Symbolic AI
Input: highly structured

Function: highly structured
Interpretability 🧠🧠🧠🧠🧠

Data Efficiency 🧠🧠🧠🧠🧠

Generalisation 🧠🧠🧠🧠

Universality 🧠

Extrapolation 🧠🧠🧠🧠🧠

Deep learning
Input: (encoded) raw inputs*
Function: weakly structured

Interpretability 🧠

Data Efficiency 🧠

Generalisation 🧠🧠🧠

Universality 🧠🧠🧠🧠🧠

Extrapolation 🧠

https://neurips.cc/virtual/2021/22954

Incorporating constraints in learning machines through model architecture Jonathon Hare

(Deep) Learning Machines

Input Representation

Fu
nc

tio
n

Le
ar

ni
ng

Predefined

Predefined

General

General

Symbolic AI

Deep Learning

MLP (universal
function

approximator)

Convolution

RNNs

…

Incorporating constraints in learning machines through model architecture Jonathon Hare

(Deep) Learning Machines

Input Representation

Fu
nc

tio
n

Le
ar

ni
ng

Predefined

Predefined

General

General

Symbolic AI

Deep Learning

Raw images / audio

Graphs, Sets
Triples (SPO)

Sequences

Incorporating constraints in learning machines through model architecture Jonathon Hare

(Deep) Learning Machines

Input Representation

Fu
nc

tio
n

Le
ar

ni
ng

Predefined

Predefined

General

General

Symbolic AI

Deep Learning

Raw images / audio

Graphs, Sets
Triples (SPO)

Sequences
Represent or Embed as a Tensor

Incorporating constraints in learning machines through model architecture Jonathon Hare

(Deep) Learning Machines

Input Representation

Fu
nc

tio
n

Le
ar

ni
ng

Predefined

Predefined

General

General

Symbolic AI

Deep Learning

Raw images / audio

Graphs, Sets
Triples (SPO)

Sequences
Represent or Embed as a Tensor

MLP (universal
function

approximator)

MLP Might not be able
to learn the semantics

of the input and/or
output type!

Thinking beyond matrix
multiplication

Incorporating constraints in learning machines through model architecture Jonathon Hare

Learning machines with architectural constraints

Input Representation

Fu
nc

tio
n

Le
ar

ni
ng

Predefined

Predefined

General

General

Neural Division Modules
Input: reals (fp32)

Output: real(s) (fp32)

Function: exp gated log-sum cosine

Deep Set Prediction Nets
Input: any tensor

Output: set of vectors

Function: optimisation + freeform

Autotracing Autoencoders
Input: image (Tensor)

Output: image + set or sequence of vectors

Function: freeform + rasteriser

Featurewise Sort Pooling
Input: set of vectors

Output: vector

Function: sorting + freeform

Autotracing Autoencoders

Daniela Mihai and Jonathon Hare (2021) Learning to Draw: Emergent Communication through Sketching. In Advances in Neural Information Processing Systems 34. vol. 34,
Neural Information Processing Systems.

Daniela Mihai and Jonathon Hare (2021) Differentiable Drawing and Sketching. arxiv:2103.16194

Daniela Mihai and Jonathon Hare (2021) Perceptions. The AI Art Gallery: NeurIPS Workshop on Machine Learning for Creativity and Design 2021.

Daniela Mihai and Jonathon Hare (2021) Physically Embodied Deep Image Optimisation. 5th Workshop on Machine Learning for Creativity and Design (ML4CD 2021) of the
Neural Information Processing Systems (NeurIPS), Virtual. 4 pp .

Daniela Mihai and Jonathon Hare (2021) Shared visual representations of drawing for communication: how do different biases affect human interpretability and intent? In Shared
Visual Representations in Human and Machine Intelligence: 2021 NeurIPS Workshop. 10 pp .

Incorporating constraints in learning machines through model architecture Jonathon Hare

Structured Image Generation
Machine vs human

• Problem: state of the art image generators use very unnatural processes

Image
generation in
deep learning
involves
functions that
operate on all
pixels
simultaneously

Humans
generate

images in a
very different

way - using
tools to draw

strokes

https://huggingface.co/blog/annotated-diffusion https://giphy.com/gifs/sketch-sketching-desenhar-4fxoQZNYnA8hsZzRNa

Incorporating constraints in learning machines through model architecture Jonathon Hare

Structured line drawing
Differentiable rasterisation

• Solution: design an architecture that is
constrained to draw a stroke and another that
can compose strokes sequentially

• Function needs to be incorporated in larger
(deep) learning system -> must be
differentiable

• Standard rasterisation techniques are not
differentiable

• We need a differentiable relaxation of
rasterisation…

Differentiable Drawing and Sketching

Daniela Mihai*

The University of Southampton
Southampton, UK

adm1g15@ecs.soton.ac.uk

Jonathon Hare*

The University of Southampton
Southampton, UK

jsh2@ecs.soton.ac.uk

point(-0.5,-0.5)
point(0.5,-0.5)
line(0.5,0,0,0)
bezier(-0.5,0,-0.5,-0.5,0.5,-0.5,0.5.0)

Parametric
Primitives

Distance
Transforms

Relaxed
Rasterisation

Differentiable
Composition

(a) Overview of the proposed approach to
drawing. The final image is differentiable
with respect to the primitive parameters.

(b) Seurat’s ‘Une baignade à Asnières’ re-
duced to straight lines instead of points by
gradient descent through the rasteriser.

Encoder
Net Ve

ct
or

En
co

di
ng Parameter

Decoder
Net

Rasteriser

Pr
im

iti
ve

Pa
ra

m
et

er
s

(c) Encoder-Decoder-Rasteriser model for
learning to map images to primitives. Or-
ange blocks have learnable parameters.

Figure 1: With a differentiable rasteriser (a), it is possible to optimise primitives (b), and build end-to-end learnable models (c).

Abstract
We present a bottom-up differentiable relaxation of the

process of drawing points, lines and curves into a pixel raster.
Our approach arises from the observation that rasterising
a pixel in an image given parameters of a primitive can be
reformulated in terms of the primitive’s distance transform,
and then relaxed to allow the primitive’s parameters to be
learned. This relaxation allows end-to-end differentiable pro-
grams and deep networks to be learned and optimised, and
provides several building blocks that allow control over how
a compositional drawing process is modelled. We emphasise
the bottom-up nature of our proposed approach, which al-
lows for drawing operations to be composed in ways that can
mimic the physical reality of drawing rather than being tied
to, for example, approaches in modern computer graphics.
With the proposed approach we demonstrate how sketches
can be generated by directly optimising against photographs
and how auto-encoders can be built to transform rasterised
handwritten digits into vectors without supervision. Extens-
ive experimental results highlight the power of this approach
under different modelling assumptions for drawing tasks.

1. Introduction and Motivation
This paper proposes a differentiable relaxation of the ras-

terisation process, which we ultimately demonstrate allows

*Authors contributed equally.

us to build end-to-end learnable machines that can perform
both image generation and inference tasks. More concretely,
we demonstrate that we can build machines that turn digital
raster images into parametric representations of continuous
paths, and back into rasterised images again. Our approach
is not constrained by any particular modelling assumptions
about how images should be composed beyond the functions
used being differentiable. This allows us to closely model
the physical act of drawing with a pen on paper for example.
We believe that the proposed approach will ultimately have
many applications in future approaches to computer vision
tasks related to topics including sketch retrieval, recognition,
and generation, as well as topics related to understanding
and analysing handwriting, and even to more general topics
around understanding visual communication.

When humans use drawing, sketching and writing to com-
municate they rarely do so by filling in pixels on a grid. Most
methods (with some notable exceptions) of producing phys-
ically realised forms of drawing and writing by hand involve
manipulating an instrument (a pen, paintbrush, pastel, etc)
to mark a surface (paper, for example). In the digital world,
this process is often approximated with vector graphics, in
which paths are ‘stroked’ and then most often rasterised onto
a pixel grid to produce digital images that can be displayed
on a monitor or reproduced in hard copy.

To date, modelling the act of drawing with techniques
such as deep neural networks has been relatively limited

1

ar
X

iv
:2

10
3.

16
19

4v
2

 [c
s.C

V
]

19
 Ju

l 2
02

1Differentiable Drawing and Sketching

Daniela Mihai*

The University of Southampton
Southampton, UK

adm1g15@ecs.soton.ac.uk

Jonathon Hare*

The University of Southampton
Southampton, UK

jsh2@ecs.soton.ac.uk

point(-0.5,-0.5)
point(0.5,-0.5)
line(0.5,0,0,0)
bezier(-0.5,0,-0.5,-0.5,0.5,-0.5,0.5.0)

Parametric
Primitives

Distance
Transforms

Relaxed
Rasterisation

Differentiable
Composition

(a) Overview of the proposed approach to
drawing. The final image is differentiable
with respect to the primitive parameters.

(b) Seurat’s ‘Une baignade à Asnières’ re-
duced to straight lines instead of points by
gradient descent through the rasteriser.

Encoder
Net Ve

ct
or

En
co

di
ng Parameter

Decoder
Net

Rasteriser

Pr
im

iti
ve

Pa
ra

m
et

er
s

(c) Encoder-Decoder-Rasteriser model for
learning to map images to primitives. Or-
ange blocks have learnable parameters.

Figure 1: With a differentiable rasteriser (a), it is possible to optimise primitives (b), and build end-to-end learnable models (c).

Abstract
We present a bottom-up differentiable relaxation of the

process of drawing points, lines and curves into a pixel raster.
Our approach arises from the observation that rasterising
a pixel in an image given parameters of a primitive can be
reformulated in terms of the primitive’s distance transform,
and then relaxed to allow the primitive’s parameters to be
learned. This relaxation allows end-to-end differentiable pro-
grams and deep networks to be learned and optimised, and
provides several building blocks that allow control over how
a compositional drawing process is modelled. We emphasise
the bottom-up nature of our proposed approach, which al-
lows for drawing operations to be composed in ways that can
mimic the physical reality of drawing rather than being tied
to, for example, approaches in modern computer graphics.
With the proposed approach we demonstrate how sketches
can be generated by directly optimising against photographs
and how auto-encoders can be built to transform rasterised
handwritten digits into vectors without supervision. Extens-
ive experimental results highlight the power of this approach
under different modelling assumptions for drawing tasks.

1. Introduction and Motivation
This paper proposes a differentiable relaxation of the ras-

terisation process, which we ultimately demonstrate allows

*Authors contributed equally.

us to build end-to-end learnable machines that can perform
both image generation and inference tasks. More concretely,
we demonstrate that we can build machines that turn digital
raster images into parametric representations of continuous
paths, and back into rasterised images again. Our approach
is not constrained by any particular modelling assumptions
about how images should be composed beyond the functions
used being differentiable. This allows us to closely model
the physical act of drawing with a pen on paper for example.
We believe that the proposed approach will ultimately have
many applications in future approaches to computer vision
tasks related to topics including sketch retrieval, recognition,
and generation, as well as topics related to understanding
and analysing handwriting, and even to more general topics
around understanding visual communication.

When humans use drawing, sketching and writing to com-
municate they rarely do so by filling in pixels on a grid. Most
methods (with some notable exceptions) of producing phys-
ically realised forms of drawing and writing by hand involve
manipulating an instrument (a pen, paintbrush, pastel, etc)
to mark a surface (paper, for example). In the digital world,
this process is often approximated with vector graphics, in
which paths are ‘stroked’ and then most often rasterised onto
a pixel grid to produce digital images that can be displayed
on a monitor or reproduced in hard copy.

To date, modelling the act of drawing with techniques
such as deep neural networks has been relatively limited

1

ar
X

iv
:2

10
3.

16
19

4v
2

 [c
s.C

V
]

19
 Ju

l 2
02

1

Incorporating constraints in learning machines through model architecture Jonathon Hare

(a) Nearest-neighbour rasterisation:
the closest pixel is shaded by the by
flooring the point ordinate. There
is no useful gradient information.

(b) Anti-aliased rasterisation: the
closest two pixels are shaded pro-
portionally by to the distance from
the point to those two pixels.

(c) Rasterisation using eq. (3) with
�2 = 1. Every pixel in the image
will have a (small) gradient with
respect to the point ordinate.

Figure 2: Different point rasterisation functions illustrated in one-dimension.

3. Differentiable relaxations of rasterisation
In this section we discuss the problem of drawing, or

rasterising points, lines and curves defined in a continuous
world space W into an image space I. Our objective is to
present a formalisation that allows us to ultimately define
rasterisation functions that are differentiable with respect to
their world space parameters (e.g. the (co)ordinate of a point,
or (co)ordinates of the beginning and end of a line segment).

3.1. 1D Rasterisation
We first consider the problem of rasterising a one-

dimensional point p 2 W where W = R. Concretely, the
process of rasterisation of the point p can be defined by a
function, f(n; p), that computes a value (typically [0, 1]) for
every pixel in the image space I, whose position is given
by n 2 I. Such a function represents a scalar field over
the space of possible values of n. Commonly we consider
values of n to be non-negative integers from the lattice or
grid, Z1

0+, defining a pixel in the image.

Simple closest-pixel rasterisation functions. If we as-
sume that the 0th pixel covers the domain [0, 1) in the world
space of a point p, and that the 1st pixel covers [1, 2), etc.
Nearest-neighbour rasterisation then maps the real-valued
point, p, to an image by rounding down:

f(n; p) =

(
1 if bpc = n

0 otherwise .
(1)

This process is illustrated in fig. 2a. An alternative rasterisa-
tion scheme, illustrated in fig. 2b is to interpolate over the
two closest pixels. Assuming that a pixel has maximal value
when the point being rasterised lies at its midpoint, then:

f(n; p) =

8
><

>:

1.5� p+ bp� 0.5c if bp� 0.5c = n

0.5 + p� dp� 0.5e if dp� 0.5e = n

0 otherwise .

(2)

These functions (extended to 2D) are actually implicitly used
in many computer graphics systems, but rarely in the form
we have written them. Most graphics subroutines approach
the rasterisation problem from the perspective of directly de-
termining which pixels in n should have a colour associated
with them given p as this is more efficient if the objective is
just to draw the primitive p.

Differentiable Relaxations. Ideally, we would like to be
able to define a rasterisation function that is differentiable
with respect to p. This would allow p to be optimised with
respect to some objective. The rasterisation function given
by eq. (1) is piecewise differentiable with respect to p, but
the gradient is zero almost everywhere which is not useful.
Although eq. (2) has some gradient in the two pixels nearest
to p, overall it has the same key problem: the gradient is zero
almost everywhere.

We would like to define a rasterisation function that has
gradient for all (or at least a large proportion of) possible
values of n. This function should be continuous and differ-
entiable almost everywhere. The anti-aliased rasterisation
approach gives some hint as to how this could be achieved:
the function could compute a value for every n based on
the distance between n and p. Distance metrics have an
infinite upper bound, whereas we want our pixel values to
be finitely bounded in [0, 1], so inversion and application of
a non-linearity are necessary. The properties of the chosen
function should give values close to 1 when n and p are
close, and values near 0 when they are far apart.

An obvious choice of non-linearity would be to exponen-
tiate the negative squared distances, and use a scaling factor
�2 to control the fuzziness of the rasterisation and the size
of the point or width of the line stroke (see fig. 2c):

f(n; p) = exp(�d2(n, p� 0.5)/�2) . (3)

It can be shown that there is a direct linear relationship (see
proof in appendix A) between the size of a point or thickness
of a line, t, and the value of �: � ⇡ 0.54925t 8 t > 0.

3.2. Relaxed Rasterisation in N-dimensions

All of the 1D rasterisation functions previously defined
can be trivially extended to rasterise a point in two or more
dimensions. For example, if the point p was considered to
be a vector in the world space W = R2 and correspondingly
n was a vector in the image space1, I = Z2

0+, and the floor
and ceiling operators are applied element-wise then all three
1D rasterisation functions hold in two (or more) dimensions.

1Note that it is most common to use positive integers to index pixels
in the image space, but this isn’t a requirement; the image space could be
unbounded or real for example.

3

c(I(1), I(2), …, I(n)) = I(1) ∨ I(2) ∨ … ∨ I(n)

Image Composition:

Rasterisation (1d shown):

f(n; p) = {1 if ⌊p⌋ = n
0 otherwise .

f(n; p) =
1.5 − p + ⌊p − 0.5⌋ if ⌊p − 0.5⌋ = n
0.5 + p − ⌈p − 0.5⌉ if ⌈p − 0.5⌉ = n
0 otherwise .

Incorporating constraints in learning machines through model architecture Jonathon Hare

(a) Nearest-neighbour rasterisation:
the closest pixel is shaded by the by
flooring the point ordinate. There
is no useful gradient information.

(b) Anti-aliased rasterisation: the
closest two pixels are shaded pro-
portionally by to the distance from
the point to those two pixels.

(c) Rasterisation using eq. (3) with
�2 = 1. Every pixel in the image
will have a (small) gradient with
respect to the point ordinate.

Figure 2: Different point rasterisation functions illustrated in one-dimension.

3. Differentiable relaxations of rasterisation
In this section we discuss the problem of drawing, or

rasterising points, lines and curves defined in a continuous
world space W into an image space I. Our objective is to
present a formalisation that allows us to ultimately define
rasterisation functions that are differentiable with respect to
their world space parameters (e.g. the (co)ordinate of a point,
or (co)ordinates of the beginning and end of a line segment).

3.1. 1D Rasterisation
We first consider the problem of rasterising a one-

dimensional point p 2 W where W = R. Concretely, the
process of rasterisation of the point p can be defined by a
function, f(n; p), that computes a value (typically [0, 1]) for
every pixel in the image space I, whose position is given
by n 2 I. Such a function represents a scalar field over
the space of possible values of n. Commonly we consider
values of n to be non-negative integers from the lattice or
grid, Z1

0+, defining a pixel in the image.

Simple closest-pixel rasterisation functions. If we as-
sume that the 0th pixel covers the domain [0, 1) in the world
space of a point p, and that the 1st pixel covers [1, 2), etc.
Nearest-neighbour rasterisation then maps the real-valued
point, p, to an image by rounding down:

f(n; p) =

(
1 if bpc = n

0 otherwise .
(1)

This process is illustrated in fig. 2a. An alternative rasterisa-
tion scheme, illustrated in fig. 2b is to interpolate over the
two closest pixels. Assuming that a pixel has maximal value
when the point being rasterised lies at its midpoint, then:

f(n; p) =

8
><

>:

1.5� p+ bp� 0.5c if bp� 0.5c = n

0.5 + p� dp� 0.5e if dp� 0.5e = n

0 otherwise .

(2)

These functions (extended to 2D) are actually implicitly used
in many computer graphics systems, but rarely in the form
we have written them. Most graphics subroutines approach
the rasterisation problem from the perspective of directly de-
termining which pixels in n should have a colour associated
with them given p as this is more efficient if the objective is
just to draw the primitive p.

Differentiable Relaxations. Ideally, we would like to be
able to define a rasterisation function that is differentiable
with respect to p. This would allow p to be optimised with
respect to some objective. The rasterisation function given
by eq. (1) is piecewise differentiable with respect to p, but
the gradient is zero almost everywhere which is not useful.
Although eq. (2) has some gradient in the two pixels nearest
to p, overall it has the same key problem: the gradient is zero
almost everywhere.

We would like to define a rasterisation function that has
gradient for all (or at least a large proportion of) possible
values of n. This function should be continuous and differ-
entiable almost everywhere. The anti-aliased rasterisation
approach gives some hint as to how this could be achieved:
the function could compute a value for every n based on
the distance between n and p. Distance metrics have an
infinite upper bound, whereas we want our pixel values to
be finitely bounded in [0, 1], so inversion and application of
a non-linearity are necessary. The properties of the chosen
function should give values close to 1 when n and p are
close, and values near 0 when they are far apart.

An obvious choice of non-linearity would be to exponen-
tiate the negative squared distances, and use a scaling factor
�2 to control the fuzziness of the rasterisation and the size
of the point or width of the line stroke (see fig. 2c):

f(n; p) = exp(�d2(n, p� 0.5)/�2) . (3)

It can be shown that there is a direct linear relationship (see
proof in appendix A) between the size of a point or thickness
of a line, t, and the value of �: � ⇡ 0.54925t 8 t > 0.

3.2. Relaxed Rasterisation in N-dimensions

All of the 1D rasterisation functions previously defined
can be trivially extended to rasterise a point in two or more
dimensions. For example, if the point p was considered to
be a vector in the world space W = R2 and correspondingly
n was a vector in the image space1, I = Z2

0+, and the floor
and ceiling operators are applied element-wise then all three
1D rasterisation functions hold in two (or more) dimensions.

1Note that it is most common to use positive integers to index pixels
in the image space, but this isn’t a requirement; the image space could be
unbounded or real for example.

3

c(I(1), I(2), …, I(n)) = I(1) ∨ I(2) ∨ … ∨ I(n)

Image Composition:

Rasterisation (1d shown):

f(n; p) = {1 if ⌊p⌋ = n
0 otherwise .

f(n; p) =
1.5 − p + ⌊p − 0.5⌋ if ⌊p − 0.5⌋ = n
0.5 + p − ⌈p − 0.5⌉ if ⌈p − 0.5⌉ = n
0 otherwise .

No good gradient No good gradient

No good gradient

Incorporating constraints in learning machines through model architecture Jonathon Hare

(a) Nearest-neighbour rasterisation:
the closest pixel is shaded by the by
flooring the point ordinate. There
is no useful gradient information.

(b) Anti-aliased rasterisation: the
closest two pixels are shaded pro-
portionally by to the distance from
the point to those two pixels.

(c) Rasterisation using eq. (3) with
�2 = 1. Every pixel in the image
will have a (small) gradient with
respect to the point ordinate.

Figure 2: Different point rasterisation functions illustrated in one-dimension.

3. Differentiable relaxations of rasterisation
In this section we discuss the problem of drawing, or

rasterising points, lines and curves defined in a continuous
world space W into an image space I. Our objective is to
present a formalisation that allows us to ultimately define
rasterisation functions that are differentiable with respect to
their world space parameters (e.g. the (co)ordinate of a point,
or (co)ordinates of the beginning and end of a line segment).

3.1. 1D Rasterisation
We first consider the problem of rasterising a one-

dimensional point p 2 W where W = R. Concretely, the
process of rasterisation of the point p can be defined by a
function, f(n; p), that computes a value (typically [0, 1]) for
every pixel in the image space I, whose position is given
by n 2 I. Such a function represents a scalar field over
the space of possible values of n. Commonly we consider
values of n to be non-negative integers from the lattice or
grid, Z1

0+, defining a pixel in the image.

Simple closest-pixel rasterisation functions. If we as-
sume that the 0th pixel covers the domain [0, 1) in the world
space of a point p, and that the 1st pixel covers [1, 2), etc.
Nearest-neighbour rasterisation then maps the real-valued
point, p, to an image by rounding down:

f(n; p) =

(
1 if bpc = n

0 otherwise .
(1)

This process is illustrated in fig. 2a. An alternative rasterisa-
tion scheme, illustrated in fig. 2b is to interpolate over the
two closest pixels. Assuming that a pixel has maximal value
when the point being rasterised lies at its midpoint, then:

f(n; p) =

8
><

>:

1.5� p+ bp� 0.5c if bp� 0.5c = n

0.5 + p� dp� 0.5e if dp� 0.5e = n

0 otherwise .

(2)

These functions (extended to 2D) are actually implicitly used
in many computer graphics systems, but rarely in the form
we have written them. Most graphics subroutines approach
the rasterisation problem from the perspective of directly de-
termining which pixels in n should have a colour associated
with them given p as this is more efficient if the objective is
just to draw the primitive p.

Differentiable Relaxations. Ideally, we would like to be
able to define a rasterisation function that is differentiable
with respect to p. This would allow p to be optimised with
respect to some objective. The rasterisation function given
by eq. (1) is piecewise differentiable with respect to p, but
the gradient is zero almost everywhere which is not useful.
Although eq. (2) has some gradient in the two pixels nearest
to p, overall it has the same key problem: the gradient is zero
almost everywhere.

We would like to define a rasterisation function that has
gradient for all (or at least a large proportion of) possible
values of n. This function should be continuous and differ-
entiable almost everywhere. The anti-aliased rasterisation
approach gives some hint as to how this could be achieved:
the function could compute a value for every n based on
the distance between n and p. Distance metrics have an
infinite upper bound, whereas we want our pixel values to
be finitely bounded in [0, 1], so inversion and application of
a non-linearity are necessary. The properties of the chosen
function should give values close to 1 when n and p are
close, and values near 0 when they are far apart.

An obvious choice of non-linearity would be to exponen-
tiate the negative squared distances, and use a scaling factor
�2 to control the fuzziness of the rasterisation and the size
of the point or width of the line stroke (see fig. 2c):

f(n; p) = exp(�d2(n, p� 0.5)/�2) . (3)

It can be shown that there is a direct linear relationship (see
proof in appendix A) between the size of a point or thickness
of a line, t, and the value of �: � ⇡ 0.54925t 8 t > 0.

3.2. Relaxed Rasterisation in N-dimensions

All of the 1D rasterisation functions previously defined
can be trivially extended to rasterise a point in two or more
dimensions. For example, if the point p was considered to
be a vector in the world space W = R2 and correspondingly
n was a vector in the image space1, I = Z2

0+, and the floor
and ceiling operators are applied element-wise then all three
1D rasterisation functions hold in two (or more) dimensions.

1Note that it is most common to use positive integers to index pixels
in the image space, but this isn’t a requirement; the image space could be
unbounded or real for example.

3

c(I(1), I(2), …, I(n)) = I(1) ∨ I(2) ∨ … ∨ I(n)

Image Composition:

Rasterisation (1d shown):

f(n; p) = {1 if ⌊p⌋ = n
0 otherwise .

f(n; p) =
1.5 − p + ⌊p − 0.5⌋ if ⌊p − 0.5⌋ = n
0.5 + p − ⌈p − 0.5⌉ if ⌈p − 0.5⌉ = n
0 otherwise .

No good gradient No good gradient

No good gradient

csoftor(I(1), I(2), …, I(n)) = 1 −
n

∏
i=1

(1 − I(i))
Good gradient

Good gradient

f(n; p) = exp(−d2(n, p − 0.5)/σ2)

Incorporating constraints in learning machines through model architecture Jonathon Hare

Autotracing Autoencoders
Learning to convert drawings to vectors

MSE LOSS

Latent Representation Primitive Representation

C
N

N

En
co

de
r

Di
ffe

re
nt

ia
bl

e

Ra

st
er

is
er

De
co

de
r

(a) Test Samples (b) Lines(L=10) (c) PolyConn(P=16) (d) Bézier(L=5,S=1) (e) BézierConn(P=16) (f) RNNBézier(St=10)

Figure XXVIII: Omniglot test set samples and reconstructions using different parameterisations of ‘stroke data’.

L.1. KMNIST (28⇥ 28 pixels)

Decoder St #P #S #L Test Acc. %

Line 1 20 1 10 0.0431 87.2
PolyLine 1 16 15 1 0.0654 75.06
PolyConnect 1 16 - - 0.0282 89.09
CRS 1 16 14 1 0.0635 76.2
Bézier 1 217 10 7 0.061 82.07
BézierConnect 1 16 - - 0.0249 90.15
RNNBézier 10 16 1 1 0.0496 80.19

Table L.1: KMNIST test MSE and classification accuracy
(with a classifier trained on the un-encoded training set) for
models constructed with different parameterisations.

Table L.1 shows a comparison between different paramet-
risations performed on KMNIST [5], the Japanese Hiragana
dataset. We provide test MSE and the classification ac-
curacy of the drawn sketches. Samples of test reconstruc-
tions using different decoders are shown in fig. XXIX. The
BézierConnect model reaches the highest accuracy and cre-
ates the closest reconstructions as shown in fig. XXIXg.

7
https://github.com/googlecreativelab/

quickdraw-dataset

L.2. QuickDraw (128⇥ 128 pixels)

Next, we presents results of the autotracing experiment
run on the Yoga class of QuickDraw7, a 50 million human
drawing dataset across 345 image categories. We used 70000
doodles of yoga poses and split them so that the test, val-
idation and train subsets were disjoint. Table L.2 shows
validation and test MSE for different parametrisations. Fig-
ure XXX illustrates reconstructions of test samples for the
different models. As seen before, learning the connections
between points leads to the best results and produces the
most similar reconstructions (figs. XXXd and XXXg).

Decoder St #P #S #L Val Test

Line 1 20 1 10 0.086 0.080
PolyLine 1 16 15 1 0.101 0.092
PolyConnect 1 16 - - 0.063 0.062
CRS 1 16 14 1 0.100 0.091
Bézier 1 50 3 5 0.0766 0.070
BézierConnect 1 16 - - 0.049 0.048
RNNBézier 10 16 1 1 0.0844 0.076

Table L.2: QuickDraw validation and test MSE for models
constructed with different parameterisations.

36

(a) Test Samples (b) Lines(L=10) (c) PolyConn(P=16) (d) Bézier(L=5,S=1) (e) BézierConn(P=16) (f) RNNBézier(St=10)

Figure XXVIII: Omniglot test set samples and reconstructions using different parameterisations of ‘stroke data’.

L.1. KMNIST (28⇥ 28 pixels)

Decoder St #P #S #L Test Acc. %

Line 1 20 1 10 0.0431 87.2
PolyLine 1 16 15 1 0.0654 75.06
PolyConnect 1 16 - - 0.0282 89.09
CRS 1 16 14 1 0.0635 76.2
Bézier 1 217 10 7 0.061 82.07
BézierConnect 1 16 - - 0.0249 90.15
RNNBézier 10 16 1 1 0.0496 80.19

Table L.1: KMNIST test MSE and classification accuracy
(with a classifier trained on the un-encoded training set) for
models constructed with different parameterisations.

Table L.1 shows a comparison between different paramet-
risations performed on KMNIST [5], the Japanese Hiragana
dataset. We provide test MSE and the classification ac-
curacy of the drawn sketches. Samples of test reconstruc-
tions using different decoders are shown in fig. XXIX. The
BézierConnect model reaches the highest accuracy and cre-
ates the closest reconstructions as shown in fig. XXIXg.

7
https://github.com/googlecreativelab/

quickdraw-dataset

L.2. QuickDraw (128⇥ 128 pixels)

Next, we presents results of the autotracing experiment
run on the Yoga class of QuickDraw7, a 50 million human
drawing dataset across 345 image categories. We used 70000
doodles of yoga poses and split them so that the test, val-
idation and train subsets were disjoint. Table L.2 shows
validation and test MSE for different parametrisations. Fig-
ure XXX illustrates reconstructions of test samples for the
different models. As seen before, learning the connections
between points leads to the best results and produces the
most similar reconstructions (figs. XXXd and XXXg).

Decoder St #P #S #L Val Test

Line 1 20 1 10 0.086 0.080
PolyLine 1 16 15 1 0.101 0.092
PolyConnect 1 16 - - 0.063 0.062
CRS 1 16 14 1 0.100 0.091
Bézier 1 50 3 5 0.0766 0.070
BézierConnect 1 16 - - 0.049 0.048
RNNBézier 10 16 1 1 0.0844 0.076

Table L.2: QuickDraw validation and test MSE for models
constructed with different parameterisations.

36

Decoder #P #S #L MSE Acc.

Line 10 1 5 0.0195 94.06%
PolyLine 16 15 1 0.0225 93.27%
PolyConnect 16 - - 0.0118 96.47%
CRS 16 14 1 0.0208 94.63%
Bézier 20 1 5 0.0136 96.34%
BézierConnect 16 - - 0.0116 96.43%

(a) MNIST Test Dataset (baseline unencoded acc. 98.60%).

Model Steps #P #S #L Acc.

StrokeNet [39] 3 (SN) 16 14 1 95.25%
StrokeNet [39] 1 16 14 1 97.75%
Ours, CRS 1 16 14 1 97.12%
Ours, Bézier 3 (GRU) 4 1 1 96.97%
Ours, Bézier 1 7 2 2 98.28%
Ours, Bézier 1 43 14 1 97.94%

(b) Scaled MNIST Dataset (baseline unencoded acc. 98.58%).

Table 2: Reconstruction performance of parameterisations, measured by MSE and classification accuracy with a classifier
trained on unencoded training sets of the respective datasets. #* indicates the number of (L)ines, (S)egments, and (P)oints. All
Scaled MNIST models use the same ‘StrokeNet Agent’ architecture [39] to map images to primitive parameters.

utilise the connection matrix, all possible combinations of
lines are rasterised and are multiplied by the appropriate
connection weight before composition (PolyConnect). In
the case of Bézier curves (BézierConnect) each point in the
connection matrix corresponds to both an end point and its
corresponding control point, and when drawing curves, the
end point is drawn using the mirror of its control point allow-
ing for smooth multiple-segment curves to be created. Zheng
et al. [39] proposed a recurrent model using a visual work-
ing memory; the network is presented at each timestep with
the features of the target image, together with the current
canvas, which is then encoded, concatenated with the input,
and transformed to the parameters of a new stroke which is
rendered and overlaid on the canvas. We experimented with
this approach but found it hard to train and computationally
expensive, so we also investigated a simple GRU [3] based
RNN which is fed a target image’s encoding as its initial
hidden state, along with a projection of a zeroed input. The
GRU output is projected to a set of Bézier curve parameters
for rendering, and also re-projected for input at the next time
step. Full details are given in appendix H.2.

Table 2a shows the effect of different stroke parametrisa-
tions on MNIST (reconstructions shown in appendix I). As
an objective measure, we compute the classification accur-
acy of rasterised sketches from the test set using a classifier
(baseline accuracy of 98.6%); reconstructions that capture
the character should have higher accuracy. Connect mod-
els, which generate strokes based on a learned connection
matrix for the given number of points, perform best due to
the flexibility of deciding which points should be joined in
a line/curve segment. Following Zheng et al. [39] we per-
form a similar experiment on their scaled MNIST dataset
(see appendix K), and also show results using the pretrained
StrokeNet models that are publicly available. The accuracies
of all models are high indicating good reconstructions, but
we note that MNIST doesn’t require complex decoders.

Figure 6 illustrates reconstruction of Omniglot [14]. Note
that the test set contains alphabets completely disjoint from

training/validation. Some small details of the characters
are missing, and it is clear that the models do not always
choose to draw stokes in the way a human would, but the
performance is generally good (see appendix J). Similar
analysis on additional datasets is shown in appendix L.

6. Future Directions
We have presented a derivation of a bottom-up differen-

tiable approach to rasterising vector primitives into images,
that allows gradients to flow through every pixel in the im-
age to the underlying primitive’s parameters. Our approach
allows us to construct end-to-end models of vision that learn
primitive parameters directly from raster images. Further,
we have demonstrated how effective sketch generation can
be achieved with different losses, and how parameterisations
can change what a model learns.

Our approach is only a building block towards future ap-
plications and research. Our own motivation for designing
this approach is to use it to explore writing and visual com-
munication, although there are undoubtedly many potential
use-cases. For us, questions to be answered next involve
looking at how we might build models that can learn to pro-
duce the appropriate number of strokes (and choose between
different types of primitive). As part of this, it is clear that re-
construction performance alone should not be the key driver
of gradient; the ability to communicate information is more
important. Both attention and weak supervision to better

(a) Val (b) Val rec. (c) Test (d) Test rec.

Figure 6: 28 pixel Omniglot validation and test data samples
and Bézier model (3 segment, 5 line) reconstructions.

8

(a) Test Samples (b) Lines(L=5) (c) PolyLine(P=8) (d) PolyLine(P=16)

(e) PolyConnect(P=5) (f) PolyConnect(P=8) (g) PolyConnect(P=16) (h) PolyConnect(P=32)

Figure XXVI: MNIST test set samples and reconstructions using different parameterisations of ‘stroke data’: Lines, PolyLine
(i.e. a series of consecutive (P)oints) and PolyConnect (a set of 2d (P)oints joined by a learned connection matrix).

Decoder St #P #S #L Val Test

Line 1 20 1 10 0.0189 0.0223
PolyConnect 1 16 - - 0.0127 0.0151
Bézier 1 20 1 5 0.0158 0.0194
BézierConnect 1 16 - - 0.0117 0.0144
RNNBézier 10 16 1 1 0.0152 0.0181
Bézier* 1 50 3 5 0.0091 0.0118

Table J.1: Omniglot validation and test MSE for models
constructed with different parameterisations and architecture
(i.e. recurrent vs single-(St)ep). Bézier* corresponds to the
model whose reconstructions were shown in fig. 6 and has
hidden1 = 512 and hidden2 = 1024.

K. StrokeNet ScaledMNIST Comparison
The StrokeNet paper [39] describes an evaluation of the

model on scaled-up MNIST characters by comparing per-
formance against a CNN-based classifier trained on the
scaled images, and then evaluated on the reconstructions.
The paper implies that the MNIST characters were just re-
sampled to 256x256, however from analysis of the source
code it can be determined that the scaling procedure was to:
resize the 28x28 characters to 120x120 using bilinear inter-
polation, pad the 120x120 images to 256x256, and change
the contrast by multiplying pixels by 0.6. Although the ori-
ginal rationale for these choices is unclear, we follow exactly
the same procedure for our experiments.

The structure of the classifier model in the paper is not
described beyond it being convolutional with 5-layers, and
no code for this aspect of the experiments was provided. We
thus chose to implement our own classifier as follows:

34

Generating Sets

Yan Zhang, Jonathon Hare and Adam Prugel-Bennett (2019) Deep Set Prediction Networks. In Advances in Neural Information Processing Systems 32. vol. 32, Neural
Information Processing Systems.

Yan Zhang and Jonathon Hare and Adam Prügel-Bennett (2020) FSPool: Learning Set Representations with Featurewise Sort Pooling. International Conference on Learning
Representations.

Yan Zhang, Jonathon Hare and Adam Prugel-Bennett (2019) FSPool: Learning set representations with featurewise sort pooling. Sets & Partitions: NeurIPS 2019 Workshop

Yan Zhang, Jonathon Hare and Adam Prugel-Bennett (2019) Deep Set Prediction Networks. Sets & Partitions: NeurIPS 2019 Workshop

Incorporating constraints in learning machines through model architecture Jonathon Hare

Predicting sets
Learning unordered things with an ordered function is hard

• Problem: turn a vector (or more generally tensor) into a set of vectors

• Applications: predicting objects in images, molecule generation, …

• But, MLPs have ordered outputs and sets are by definition unordered

Incorporating constraints in learning machines through model architecture Jonathon Hare

Reversing an invariant encoder
Deep Set Prediction Networks

• Solution: need to define a function (or procedure) that is unordered

• Observation: gradient of a permutation-invariant encoder (set to vector) with
respect to the input are permutation equivariant

• i.e. gradients do not depend on order!

• Implication: to decode a feature vector into a set, we can use gradient descent to
find a set that encodes to that feature vector

• We can define a procedure that iteratively follows gradients in the forward pass

δloss
δset

Incorporating constraints in learning machines through model architecture Jonathon Hare

Autoencoding sets

D��� S�� P��������� N������� Yan Zhang, Jonathon Hare, Adam Prügel-BennettD��� S�� P��������� N������� Yan Zhang, Jonathon Hare, Adam Prügel-Bennett

Sets are unordered collections of things

•Many things can be described as sets of feature vectors:
– the set of objects in an image,
– the set of points in a point cloud,
– the set of nodes and edges in a graph,
– the set of people reading this poster.
•Predicting sets means object detection, molecule generation, etc.
• This paper is about doing this vector-to-set mapping properly.
•Compared to normal object detection methods:
–Anchor-free, fully end-to-end, no post-processing.

MLPs are not suited for sets

• Sets are unordered, but MLP and RNN outputs are ordered.
!Discontinuities from responsibility problem.
• Let’s look at a normal set auto-encoder:

Encoder M
LP

(-�, -�)
(�, -�)
(�, �)
(-�, �)

(-�, �)
(�, �)
(�, -�)
(-�, -�)

• The responsibility problem:
(a)

(c) (d)

(b)

90�

✏
discontinuity

30� 60�� ✏

• (a) and (b) are the same set.
! (a) and (b) encode to the same vector.
! (a) and (b) have the same MLP output.
• (a) is turned into (b) by rotating ���.
!Rotation starts and ends with the same set.
!MLP outputs can’t just follow the ��� rotation!
! There must be a discontinuity between (c) and (d)!
All the outputs have to jump ��� anti-clockwise.

Conclusion:
• Smooth change of set requires discontinuous change of MLP outputs.
• To predict unordered sets, we should use an unordered model.

To predict a set from a vector,

use gradient descent to find a

set that encodes to that vector.

The idea

• Similar set inputs encode to similar feature vectors.
•Di�erent set inputs encode to di�erent feature vectors.
! Minimise the di�erence between predicted and target set by minimising
the di�erence between their feature vectors.

MSE MSE

Encoder
Encoder

Encoder

�@ MSE
@ Step �

�@ MSE
@ Step �

Step � Step � Step � Step ��

Input Target

set loss

. . .

MSE MSE

Encoder
Encoder

Encoder

�@ MSE
@ Step �

�@ MSE
@ Step �

Step � Step � Step � Step ��

Input Target

set loss

. . .

• Train (shared) encoder weights by minimising the set loss.
•Gradients of permutation-invariant functions are equivariant.
!All gradient updates @MSE/@set don’t rely on the order of the set.
!Our model is completely unordered, exactly what we wanted!

Bounding box set prediction

Bounding box prediction AP�� AP�� AP�� AP�� AP��
MLP baseline ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.� �.�±�.�

RNN baseline ��.�±�.� ��.�±�.� ��.�±��.� �.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±��.� ��.�±�.� �.�±�.�

���d

MSE

MSE loss

ResNet��
Encoder

En
co
de
r

�@ MSE
@ Step �

Step � Step � Step ��

Input Target

set loss

. . .

• Simply replace input encoder with ConvNet image encoder.
•Add MSE loss to set loss when training the encoder and ResNet weights.
– Forces minimisation of MSE to converge to something sensible.

Step � Step � Step �� Step ��

Object detection

Object attribute prediction AP1 AP� AP�.� AP�.�� AP�.���
MLP baseline �.�±�.� �.�±�.� �.�±�.� �.�±�.� �.�±�.�

RNN baseline �.�±�.� �.�±�.� �.�±�.� �.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±��.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±��.� ��.�±�.� �.�±�.�

Input Step � Step �� Step �� Target
x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, -�.��, �.��) x, y, z � (-�.��, -�.��, �.��) x, y, z � (-�.��, -�.��, �.��)

large purple rubber sphere large yellow metal cube large yellow metal cube large yellow metal cube

x, y, z � (�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��)
large gray metal cube large purple rubber sphere large purple rubber sphere large purple rubber sphere

x, y, z � (�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��)
small purple metal cube small gray rubber sphere small gray rubber sphere small gray rubber sphere

x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��)
small purple rubber sphere small yellow metal cube small purple metal cube small purple metal cube

Code and pre-trained models available at
https://github.com/Cyanogenoid/dspn

Incorporating constraints in learning machines through model architecture Jonathon Hare

Object detection

D��� S�� P��������� N������� Yan Zhang, Jonathon Hare, Adam Prügel-BennettD��� S�� P��������� N������� Yan Zhang, Jonathon Hare, Adam Prügel-Bennett

Sets are unordered collections of things

•Many things can be described as sets of feature vectors:
– the set of objects in an image,
– the set of points in a point cloud,
– the set of nodes and edges in a graph,
– the set of people reading this poster.
•Predicting sets means object detection, molecule generation, etc.
• This paper is about doing this vector-to-set mapping properly.
•Compared to normal object detection methods:
–Anchor-free, fully end-to-end, no post-processing.

MLPs are not suited for sets

• Sets are unordered, but MLP and RNN outputs are ordered.
!Discontinuities from responsibility problem.
• Let’s look at a normal set auto-encoder:

Encoder M
LP

(-�, -�)
(�, -�)
(�, �)
(-�, �)

(-�, �)
(�, �)
(�, -�)
(-�, -�)

• The responsibility problem:
(a)

(c) (d)

(b)

90�

✏
discontinuity

30� 60�� ✏

• (a) and (b) are the same set.
! (a) and (b) encode to the same vector.
! (a) and (b) have the same MLP output.
• (a) is turned into (b) by rotating ���.
!Rotation starts and ends with the same set.
!MLP outputs can’t just follow the ��� rotation!
! There must be a discontinuity between (c) and (d)!
All the outputs have to jump ��� anti-clockwise.

Conclusion:
• Smooth change of set requires discontinuous change of MLP outputs.
• To predict unordered sets, we should use an unordered model.

To predict a set from a vector,

use gradient descent to find a

set that encodes to that vector.

The idea

• Similar set inputs encode to similar feature vectors.
•Di�erent set inputs encode to di�erent feature vectors.
! Minimise the di�erence between predicted and target set by minimising
the di�erence between their feature vectors.

MSE MSE

Encoder
Encoder

Encoder

�@ MSE
@ Step �

�@ MSE
@ Step �

Step � Step � Step � Step ��

Input Target

set loss

. . .

MSE MSE

Encoder
Encoder

Encoder

�@ MSE
@ Step �

�@ MSE
@ Step �

Step � Step � Step � Step ��

Input Target

set loss

. . .

• Train (shared) encoder weights by minimising the set loss.
•Gradients of permutation-invariant functions are equivariant.
!All gradient updates @MSE/@set don’t rely on the order of the set.
!Our model is completely unordered, exactly what we wanted!

Bounding box set prediction

Bounding box prediction AP�� AP�� AP�� AP�� AP��
MLP baseline ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.� �.�±�.�

RNN baseline ��.�±�.� ��.�±�.� ��.�±��.� �.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±��.� ��.�±�.� �.�±�.�

���d

MSE

MSE loss

ResNet��
Encoder

En
co
de
r

�@ MSE
@ Step �

Step � Step � Step ��

Input Target

set loss

. . .

• Simply replace input encoder with ConvNet image encoder.
•Add MSE loss to set loss when training the encoder and ResNet weights.
– Forces minimisation of MSE to converge to something sensible.

Step � Step � Step �� Step ��

Object detection

Object attribute prediction AP1 AP� AP�.� AP�.�� AP�.���
MLP baseline �.�±�.� �.�±�.� �.�±�.� �.�±�.� �.�±�.�

RNN baseline �.�±�.� �.�±�.� �.�±�.� �.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±��.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±��.� ��.�±�.� �.�±�.�

Input Step � Step �� Step �� Target
x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, -�.��, �.��) x, y, z � (-�.��, -�.��, �.��) x, y, z � (-�.��, -�.��, �.��)

large purple rubber sphere large yellow metal cube large yellow metal cube large yellow metal cube

x, y, z � (�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��)
large gray metal cube large purple rubber sphere large purple rubber sphere large purple rubber sphere

x, y, z � (�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��)
small purple metal cube small gray rubber sphere small gray rubber sphere small gray rubber sphere

x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��)
small purple rubber sphere small yellow metal cube small purple metal cube small purple metal cube

Code and pre-trained models available at
https://github.com/Cyanogenoid/dspn

D��� S�� P��������� N������� Yan Zhang, Jonathon Hare, Adam Prügel-BennettD��� S�� P��������� N������� Yan Zhang, Jonathon Hare, Adam Prügel-Bennett

Sets are unordered collections of things

•Many things can be described as sets of feature vectors:
– the set of objects in an image,
– the set of points in a point cloud,
– the set of nodes and edges in a graph,
– the set of people reading this poster.
•Predicting sets means object detection, molecule generation, etc.
• This paper is about doing this vector-to-set mapping properly.
•Compared to normal object detection methods:
–Anchor-free, fully end-to-end, no post-processing.

MLPs are not suited for sets

• Sets are unordered, but MLP and RNN outputs are ordered.
!Discontinuities from responsibility problem.
• Let’s look at a normal set auto-encoder:

Encoder M
LP

(-�, -�)
(�, -�)
(�, �)
(-�, �)

(-�, �)
(�, �)
(�, -�)
(-�, -�)

• The responsibility problem:
(a)

(c) (d)

(b)

90�

✏
discontinuity

30� 60�� ✏

• (a) and (b) are the same set.
! (a) and (b) encode to the same vector.
! (a) and (b) have the same MLP output.
• (a) is turned into (b) by rotating ���.
!Rotation starts and ends with the same set.
!MLP outputs can’t just follow the ��� rotation!
! There must be a discontinuity between (c) and (d)!
All the outputs have to jump ��� anti-clockwise.

Conclusion:
• Smooth change of set requires discontinuous change of MLP outputs.
• To predict unordered sets, we should use an unordered model.

To predict a set from a vector,

use gradient descent to find a

set that encodes to that vector.

The idea

• Similar set inputs encode to similar feature vectors.
•Di�erent set inputs encode to di�erent feature vectors.
! Minimise the di�erence between predicted and target set by minimising
the di�erence between their feature vectors.

MSE MSE

Encoder
Encoder

Encoder

�@ MSE
@ Step �

�@ MSE
@ Step �

Step � Step � Step � Step ��

Input Target

set loss

. . .

MSE MSE

Encoder
Encoder

Encoder

�@ MSE
@ Step �

�@ MSE
@ Step �

Step � Step � Step � Step ��

Input Target

set loss

. . .

• Train (shared) encoder weights by minimising the set loss.
•Gradients of permutation-invariant functions are equivariant.
!All gradient updates @MSE/@set don’t rely on the order of the set.
!Our model is completely unordered, exactly what we wanted!

Bounding box set prediction

Bounding box prediction AP�� AP�� AP�� AP�� AP��
MLP baseline ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.� �.�±�.�

RNN baseline ��.�±�.� ��.�±�.� ��.�±��.� �.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±��.� ��.�±�.� �.�±�.�

���d

MSE

MSE loss

ResNet��
Encoder

En
co
de
r

�@ MSE
@ Step �

Step � Step � Step ��

Input Target

set loss

. . .

• Simply replace input encoder with ConvNet image encoder.
•Add MSE loss to set loss when training the encoder and ResNet weights.
– Forces minimisation of MSE to converge to something sensible.

Step � Step � Step �� Step ��

Object detection

Object attribute prediction AP1 AP� AP�.� AP�.�� AP�.���
MLP baseline �.�±�.� �.�±�.� �.�±�.� �.�±�.� �.�±�.�

RNN baseline �.�±�.� �.�±�.� �.�±�.� �.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±��.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±��.� ��.�±�.� �.�±�.�

Input Step � Step �� Step �� Target
x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, -�.��, �.��) x, y, z � (-�.��, -�.��, �.��) x, y, z � (-�.��, -�.��, �.��)

large purple rubber sphere large yellow metal cube large yellow metal cube large yellow metal cube

x, y, z � (�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��)
large gray metal cube large purple rubber sphere large purple rubber sphere large purple rubber sphere

x, y, z � (�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��)
small purple metal cube small gray rubber sphere small gray rubber sphere small gray rubber sphere

x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��)
small purple rubber sphere small yellow metal cube small purple metal cube small purple metal cube

Code and pre-trained models available at
https://github.com/Cyanogenoid/dspn

Incorporating constraints in learning machines through model architecture Jonathon Hare

Object detection

D��� S�� P��������� N������� Yan Zhang, Jonathon Hare, Adam Prügel-BennettD��� S�� P��������� N������� Yan Zhang, Jonathon Hare, Adam Prügel-Bennett

Sets are unordered collections of things

•Many things can be described as sets of feature vectors:
– the set of objects in an image,
– the set of points in a point cloud,
– the set of nodes and edges in a graph,
– the set of people reading this poster.
•Predicting sets means object detection, molecule generation, etc.
• This paper is about doing this vector-to-set mapping properly.
•Compared to normal object detection methods:
–Anchor-free, fully end-to-end, no post-processing.

MLPs are not suited for sets

• Sets are unordered, but MLP and RNN outputs are ordered.
!Discontinuities from responsibility problem.
• Let’s look at a normal set auto-encoder:

Encoder M
LP

(-�, -�)
(�, -�)
(�, �)
(-�, �)

(-�, �)
(�, �)
(�, -�)
(-�, -�)

• The responsibility problem:
(a)

(c) (d)

(b)

90�

✏
discontinuity

30� 60�� ✏

• (a) and (b) are the same set.
! (a) and (b) encode to the same vector.
! (a) and (b) have the same MLP output.
• (a) is turned into (b) by rotating ���.
!Rotation starts and ends with the same set.
!MLP outputs can’t just follow the ��� rotation!
! There must be a discontinuity between (c) and (d)!
All the outputs have to jump ��� anti-clockwise.

Conclusion:
• Smooth change of set requires discontinuous change of MLP outputs.
• To predict unordered sets, we should use an unordered model.

To predict a set from a vector,

use gradient descent to find a

set that encodes to that vector.

The idea

• Similar set inputs encode to similar feature vectors.
•Di�erent set inputs encode to di�erent feature vectors.
! Minimise the di�erence between predicted and target set by minimising
the di�erence between their feature vectors.

MSE MSE

Encoder
Encoder

Encoder

�@ MSE
@ Step �

�@ MSE
@ Step �

Step � Step � Step � Step ��

Input Target

set loss

. . .

MSE MSE

Encoder
Encoder

Encoder

�@ MSE
@ Step �

�@ MSE
@ Step �

Step � Step � Step � Step ��

Input Target

set loss

. . .

• Train (shared) encoder weights by minimising the set loss.
•Gradients of permutation-invariant functions are equivariant.
!All gradient updates @MSE/@set don’t rely on the order of the set.
!Our model is completely unordered, exactly what we wanted!

Bounding box set prediction

Bounding box prediction AP�� AP�� AP�� AP�� AP��
MLP baseline ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.� �.�±�.�

RNN baseline ��.�±�.� ��.�±�.� ��.�±��.� �.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±��.� ��.�±�.� �.�±�.�

���d

MSE

MSE loss

ResNet��
Encoder

En
co
de
r

�@ MSE
@ Step �

Step � Step � Step ��

Input Target

set loss

. . .

• Simply replace input encoder with ConvNet image encoder.
•Add MSE loss to set loss when training the encoder and ResNet weights.
– Forces minimisation of MSE to converge to something sensible.

Step � Step � Step �� Step ��

Object detection

Object attribute prediction AP1 AP� AP�.� AP�.�� AP�.���
MLP baseline �.�±�.� �.�±�.� �.�±�.� �.�±�.� �.�±�.�

RNN baseline �.�±�.� �.�±�.� �.�±�.� �.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±��.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±��.� ��.�±�.� �.�±�.�

Input Step � Step �� Step �� Target
x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, -�.��, �.��) x, y, z � (-�.��, -�.��, �.��) x, y, z � (-�.��, -�.��, �.��)

large purple rubber sphere large yellow metal cube large yellow metal cube large yellow metal cube

x, y, z � (�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��)
large gray metal cube large purple rubber sphere large purple rubber sphere large purple rubber sphere

x, y, z � (�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��)
small purple metal cube small gray rubber sphere small gray rubber sphere small gray rubber sphere

x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��)
small purple rubber sphere small yellow metal cube small purple metal cube small purple metal cube

Code and pre-trained models available at
https://github.com/Cyanogenoid/dspn

D��� S�� P��������� N������� Yan Zhang, Jonathon Hare, Adam Prügel-BennettD��� S�� P��������� N������� Yan Zhang, Jonathon Hare, Adam Prügel-Bennett

Sets are unordered collections of things

•Many things can be described as sets of feature vectors:
– the set of objects in an image,
– the set of points in a point cloud,
– the set of nodes and edges in a graph,
– the set of people reading this poster.
•Predicting sets means object detection, molecule generation, etc.
• This paper is about doing this vector-to-set mapping properly.
•Compared to normal object detection methods:
–Anchor-free, fully end-to-end, no post-processing.

MLPs are not suited for sets

• Sets are unordered, but MLP and RNN outputs are ordered.
!Discontinuities from responsibility problem.
• Let’s look at a normal set auto-encoder:

Encoder M
LP

(-�, -�)
(�, -�)
(�, �)
(-�, �)

(-�, �)
(�, �)
(�, -�)
(-�, -�)

• The responsibility problem:
(a)

(c) (d)

(b)

90�

✏
discontinuity

30� 60�� ✏

• (a) and (b) are the same set.
! (a) and (b) encode to the same vector.
! (a) and (b) have the same MLP output.
• (a) is turned into (b) by rotating ���.
!Rotation starts and ends with the same set.
!MLP outputs can’t just follow the ��� rotation!
! There must be a discontinuity between (c) and (d)!
All the outputs have to jump ��� anti-clockwise.

Conclusion:
• Smooth change of set requires discontinuous change of MLP outputs.
• To predict unordered sets, we should use an unordered model.

To predict a set from a vector,

use gradient descent to find a

set that encodes to that vector.

The idea

• Similar set inputs encode to similar feature vectors.
•Di�erent set inputs encode to di�erent feature vectors.
! Minimise the di�erence between predicted and target set by minimising
the di�erence between their feature vectors.

MSE MSE

Encoder
Encoder

Encoder

�@ MSE
@ Step �

�@ MSE
@ Step �

Step � Step � Step � Step ��

Input Target

set loss

. . .

MSE MSE

Encoder
Encoder

Encoder

�@ MSE
@ Step �

�@ MSE
@ Step �

Step � Step � Step � Step ��

Input Target

set loss

. . .

• Train (shared) encoder weights by minimising the set loss.
•Gradients of permutation-invariant functions are equivariant.
!All gradient updates @MSE/@set don’t rely on the order of the set.
!Our model is completely unordered, exactly what we wanted!

Bounding box set prediction

Bounding box prediction AP�� AP�� AP�� AP�� AP��
MLP baseline ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.� �.�±�.�

RNN baseline ��.�±�.� ��.�±�.� ��.�±��.� �.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±��.� ��.�±�.� �.�±�.�

���d

MSE

MSE loss

ResNet��
Encoder

En
co
de
r

�@ MSE
@ Step �

Step � Step � Step ��

Input Target

set loss

. . .

• Simply replace input encoder with ConvNet image encoder.
•Add MSE loss to set loss when training the encoder and ResNet weights.
– Forces minimisation of MSE to converge to something sensible.

Step � Step � Step �� Step ��

Object detection

Object attribute prediction AP1 AP� AP�.� AP�.�� AP�.���
MLP baseline �.�±�.� �.�±�.� �.�±�.� �.�±�.� �.�±�.�

RNN baseline �.�±�.� �.�±�.� �.�±�.� �.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±��.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±��.� ��.�±�.� �.�±�.�

Input Step � Step �� Step �� Target
x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, -�.��, �.��) x, y, z � (-�.��, -�.��, �.��) x, y, z � (-�.��, -�.��, �.��)

large purple rubber sphere large yellow metal cube large yellow metal cube large yellow metal cube

x, y, z � (�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��)
large gray metal cube large purple rubber sphere large purple rubber sphere large purple rubber sphere

x, y, z � (�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��)
small purple metal cube small gray rubber sphere small gray rubber sphere small gray rubber sphere

x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��)
small purple rubber sphere small yellow metal cube small purple metal cube small purple metal cube

Code and pre-trained models available at
https://github.com/Cyanogenoid/dspn

D��� S�� P��������� N������� Yan Zhang, Jonathon Hare, Adam Prügel-BennettD��� S�� P��������� N������� Yan Zhang, Jonathon Hare, Adam Prügel-Bennett

Sets are unordered collections of things

•Many things can be described as sets of feature vectors:
– the set of objects in an image,
– the set of points in a point cloud,
– the set of nodes and edges in a graph,
– the set of people reading this poster.
•Predicting sets means object detection, molecule generation, etc.
• This paper is about doing this vector-to-set mapping properly.
•Compared to normal object detection methods:
–Anchor-free, fully end-to-end, no post-processing.

MLPs are not suited for sets

• Sets are unordered, but MLP and RNN outputs are ordered.
!Discontinuities from responsibility problem.
• Let’s look at a normal set auto-encoder:

Encoder M
LP

(-�, -�)
(�, -�)
(�, �)
(-�, �)

(-�, �)
(�, �)
(�, -�)
(-�, -�)

• The responsibility problem:
(a)

(c) (d)

(b)

90�

✏
discontinuity

30� 60�� ✏

• (a) and (b) are the same set.
! (a) and (b) encode to the same vector.
! (a) and (b) have the same MLP output.
• (a) is turned into (b) by rotating ���.
!Rotation starts and ends with the same set.
!MLP outputs can’t just follow the ��� rotation!
! There must be a discontinuity between (c) and (d)!
All the outputs have to jump ��� anti-clockwise.

Conclusion:
• Smooth change of set requires discontinuous change of MLP outputs.
• To predict unordered sets, we should use an unordered model.

To predict a set from a vector,

use gradient descent to find a

set that encodes to that vector.

The idea

• Similar set inputs encode to similar feature vectors.
•Di�erent set inputs encode to di�erent feature vectors.
! Minimise the di�erence between predicted and target set by minimising
the di�erence between their feature vectors.

MSE MSE

Encoder
Encoder

Encoder

�@ MSE
@ Step �

�@ MSE
@ Step �

Step � Step � Step � Step ��

Input Target

set loss

. . .

MSE MSE

Encoder
Encoder

Encoder

�@ MSE
@ Step �

�@ MSE
@ Step �

Step � Step � Step � Step ��

Input Target

set loss

. . .

• Train (shared) encoder weights by minimising the set loss.
•Gradients of permutation-invariant functions are equivariant.
!All gradient updates @MSE/@set don’t rely on the order of the set.
!Our model is completely unordered, exactly what we wanted!

Bounding box set prediction

Bounding box prediction AP�� AP�� AP�� AP�� AP��
MLP baseline ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.� �.�±�.�

RNN baseline ��.�±�.� ��.�±�.� ��.�±��.� �.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±��.� ��.�±�.� �.�±�.�

���d

MSE

MSE loss

ResNet��
Encoder

En
co
de
r

�@ MSE
@ Step �

Step � Step � Step ��

Input Target

set loss

. . .

• Simply replace input encoder with ConvNet image encoder.
•Add MSE loss to set loss when training the encoder and ResNet weights.
– Forces minimisation of MSE to converge to something sensible.

Step � Step � Step �� Step ��

Object detection

Object attribute prediction AP1 AP� AP�.� AP�.�� AP�.���
MLP baseline �.�±�.� �.�±�.� �.�±�.� �.�±�.� �.�±�.�

RNN baseline �.�±�.� �.�±�.� �.�±�.� �.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±��.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±��.� ��.�±�.� �.�±�.�

Input Step � Step �� Step �� Target
x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, -�.��, �.��) x, y, z � (-�.��, -�.��, �.��) x, y, z � (-�.��, -�.��, �.��)

large purple rubber sphere large yellow metal cube large yellow metal cube large yellow metal cube

x, y, z � (�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��)
large gray metal cube large purple rubber sphere large purple rubber sphere large purple rubber sphere

x, y, z � (�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��)
small purple metal cube small gray rubber sphere small gray rubber sphere small gray rubber sphere

x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��)
small purple rubber sphere small yellow metal cube small purple metal cube small purple metal cube

Code and pre-trained models available at
https://github.com/Cyanogenoid/dspn

Incorporating constraints in learning machines through model architecture Jonathon Hare

Object and attribute prediction

D��� S�� P��������� N������� Yan Zhang, Jonathon Hare, Adam Prügel-BennettD��� S�� P��������� N������� Yan Zhang, Jonathon Hare, Adam Prügel-Bennett

Sets are unordered collections of things

•Many things can be described as sets of feature vectors:
– the set of objects in an image,
– the set of points in a point cloud,
– the set of nodes and edges in a graph,
– the set of people reading this poster.
•Predicting sets means object detection, molecule generation, etc.
• This paper is about doing this vector-to-set mapping properly.
•Compared to normal object detection methods:
–Anchor-free, fully end-to-end, no post-processing.

MLPs are not suited for sets

• Sets are unordered, but MLP and RNN outputs are ordered.
!Discontinuities from responsibility problem.
• Let’s look at a normal set auto-encoder:

Encoder M
LP

(-�, -�)
(�, -�)
(�, �)
(-�, �)

(-�, �)
(�, �)
(�, -�)
(-�, -�)

• The responsibility problem:
(a)

(c) (d)

(b)

90�

✏
discontinuity

30� 60�� ✏

• (a) and (b) are the same set.
! (a) and (b) encode to the same vector.
! (a) and (b) have the same MLP output.
• (a) is turned into (b) by rotating ���.
!Rotation starts and ends with the same set.
!MLP outputs can’t just follow the ��� rotation!
! There must be a discontinuity between (c) and (d)!
All the outputs have to jump ��� anti-clockwise.

Conclusion:
• Smooth change of set requires discontinuous change of MLP outputs.
• To predict unordered sets, we should use an unordered model.

To predict a set from a vector,

use gradient descent to find a

set that encodes to that vector.

The idea

• Similar set inputs encode to similar feature vectors.
•Di�erent set inputs encode to di�erent feature vectors.
! Minimise the di�erence between predicted and target set by minimising
the di�erence between their feature vectors.

MSE MSE

Encoder
Encoder

Encoder

�@ MSE
@ Step �

�@ MSE
@ Step �

Step � Step � Step � Step ��

Input Target

set loss

. . .

MSE MSE

Encoder
Encoder

Encoder

�@ MSE
@ Step �

�@ MSE
@ Step �

Step � Step � Step � Step ��

Input Target

set loss

. . .

• Train (shared) encoder weights by minimising the set loss.
•Gradients of permutation-invariant functions are equivariant.
!All gradient updates @MSE/@set don’t rely on the order of the set.
!Our model is completely unordered, exactly what we wanted!

Bounding box set prediction

Bounding box prediction AP�� AP�� AP�� AP�� AP��
MLP baseline ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.� �.�±�.�

RNN baseline ��.�±�.� ��.�±�.� ��.�±��.� �.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±��.� ��.�±�.� �.�±�.�

���d

MSE

MSE loss

ResNet��
Encoder

En
co
de
r

�@ MSE
@ Step �

Step � Step � Step ��

Input Target

set loss

. . .

• Simply replace input encoder with ConvNet image encoder.
•Add MSE loss to set loss when training the encoder and ResNet weights.
– Forces minimisation of MSE to converge to something sensible.

Step � Step � Step �� Step ��

Object detection

Object attribute prediction AP1 AP� AP�.� AP�.�� AP�.���
MLP baseline �.�±�.� �.�±�.� �.�±�.� �.�±�.� �.�±�.�

RNN baseline �.�±�.� �.�±�.� �.�±�.� �.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±�.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±��.� ��.�±�.� �.�±�.�

Ours (train �� steps, eval �� steps) ��.�±�.� ��.�±�.� ��.�±��.� ��.�±�.� �.�±�.�

Input Step � Step �� Step �� Target
x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, -�.��, �.��) x, y, z � (-�.��, -�.��, �.��) x, y, z � (-�.��, -�.��, �.��)

large purple rubber sphere large yellow metal cube large yellow metal cube large yellow metal cube

x, y, z � (�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��)
large gray metal cube large purple rubber sphere large purple rubber sphere large purple rubber sphere

x, y, z � (�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��) x, y, z � (-�.��, �.��, �.��)
small purple metal cube small gray rubber sphere small gray rubber sphere small gray rubber sphere

x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��) x, y, z � (�.��, �.��, �.��)
small purple rubber sphere small yellow metal cube small purple metal cube small purple metal cube

Code and pre-trained models available at
https://github.com/Cyanogenoid/dspn

Where next?

Incorporating constraints in learning machines through model architecture Jonathon Hare

The AI Landscape

Input Representation

Fu
nc

tio
n

Le
ar

ni
ng

Credit to Antonia Creswell (https://neurips.cc/virtual/2021/22954) for this image

Predefined

Predefined

General

General

Symbolic AI

Deep Learning

Neuro-symbolic methods

https://neurips.cc/virtual/2021/22954

Incorporating constraints in learning machines through model architecture Jonathon Hare

What do we want from learning AI?
• Good generalisation

• ID / OOD

• Good robustness

• Not falling for trivial adversarial
examples

• Good explainability

• Some understanding of why a
machine is making a decision

• Well calibrated confidences

Incorporating constraints in learning machines through model architecture Jonathon Hare

What do we want from learning AI?
• Good generalisation

• ID / OOD

• Good robustness

• Not falling for trivial adversarial
examples

• Good explainability

• Some understanding of why a
machine is making a decision

• Well calibrated confidences

How do we measure
these?

Many (most?) current
measures are flawed

Incorporating constraints in learning machines through model architecture Jonathon Hare

What do we want from learning AI?
• Good generalisation

• ID / OOD

• Good robustness

• Not falling for trivial adversarial
examples

• Good explainability

• Some understanding of why a
machine is making a decision

• Well calibrated confidences

The importance of feature
combinations - (highly nonlinear)

decision rules integrating information
from different sources

Cue combination (cognitive sciences)
Disentanglement and compositionality

[in a semantic sense]
“Decision Decompositionality”

“More distributed features”
Entanglement [in a geometric sense]

Function re-use

Incorporating constraints in learning machines through model architecture Jonathon Hare

What do we want from learning AI?
• Good generalisation

• ID / OOD

• Good robustness

• Not falling for trivial adversarial
examples

• Good explainability

• Some understanding of why a
machine is making a decision

• Well calibrated confidences

My take:

We need to architecture
functions to achieve

these goals

Playing with losses can
help, but will only get
us so far - our models
might learn, but maybe

not in the intended
direction

Any Questions?

