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Semantic objective functions
Unifying some types of loss functions



Agenda 

• MultiplexNet - Towards Fully Satisfied Logical Constraints in Neural Networks.


• Some ideas for unifying strategies 

Hoernle et al 2021; Mendez-Lucero et al. 2023



Overview

• Incorporation of expert knowledge into the training of deep neural networks.


•Domain knowledge represented as a quantifier-free logical formula in disjunctive normal form 
(DNF).


•Latent Categorical variable that learns to choose which constraint term optimizes the error 
function.


•Approach guarantees 100% constraint satisfaction in a network's output.


Results:


•Approximates unknown distributions well, requiring fewer data samples than the alternative 
approaches.


•Shown to be both efficient and general.



Motivating Example - Density Estimation Task

Generated Data



Motivating Example - How to use Constraints in Training?

Generated Data

Φ = (x1 > − .5 ∧ x1 < .5 ∧ x2 > .5 ∧ x2 < 4) ∨ …
… ∨ (x1 + x2 > − .5 ∧ x1 + x2 < .5 ∧ x1 − x2 > .5 ∧ x1 − x2 < 4)



Motivating Example - Force Constraint Satisfaction

Epoch 0 Epoch 10 Epoch 25 Epoch 50
Generated Data
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Motivating Example - Desiderata
(1) Data Efficiency



(2) Predictability (safety critical systems)



Motivating Example - Posterior Samples
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Constraining Probabilistic Models

X = {x(0), …, x(N) ∣ x(i) ∼iid p*(x), x(i) ⊧ Φ}

(1) Given a dataset from unknown density p* but known 
to entail :Φ



Constraining Probabilistic Models - Standard Training

X = {x(0), …, x(N) ∣ x(i) ∼iid p*(x), x(i) ⊧ Φ}

pθ(x)

(1) Given a dataset from unknown density p* but known 
to entail :Φ

(2) Train a parameterised model to maximise the 
likelihood of the data:

pθ*(x) = arg max
θ

(log pθ(X))
Design:

Train:

pθ(x)



X = {x(0), …, x(N) ∣ x(i) ∼iid p*(x), x(i) ⊧ Φ}

pθ(x)

(1) Given a dataset from unknown density p* but known 
to entail :Φ

(2) Train a parameterised model to maximise the 
likelihood of the data:

Design:

Train:

But what about ? Φ

pθ(x)

pθ*(x) = arg max
θ

(log pθ(X))



Constraining Probabilistic Models - Solutions to Include  Φ

pθ(x) pθ(x)

(1) Append a loss term to training:

(2) Reparameterise output of network:

pθ*(x) = arg max
θ

[log pθ(X)+LΦ(X)]

Design:

Train:

Fischer, M., Balunovic, M., Drachsler-Cohen, D., Gehr, T., Zhang, C. and Vechev, M., 2019, May. Dl2: Training and querying neural networks with logic. ICML

Xu, J., Zhang, Z., Friedman, T., Liang, Y. and Broeck, G., 2018, July. A semantic loss function for deep learning with symbolic knowledge. ICML

Innes, C. and Ramamoorthy, S., 2020. Elaborating on learned demonstrations with temporal logic specifications.

such that the output of the network follows 
 by construction.Φ



Network Output Non-Linearities - Standard Transformations can Restrict Output 

Identity. E.g. a regression network 
trained on MSE

Softplus. Constrains output to be 
element wise positive.

Sigmoid. Output is .∈ (0,1)

ReLU. Constrains output to be 
element wise  0.≥x′ 



Network Output Non-Linearities
Identity. E.g. a regression network 
trained on MSE

Softplus. Constrain output to be 
element wise positive.

Sigmoid. Output is .∈ (0,1)

ReLU. Constrain output to be 
element wise  0.≥x′ 

Φ = ϕ1 ∨ ϕ2 ∨ … ∨ ϕK

Idea: If  is given in DNF, each term  in  can be suitably represented by a 
combination of affine transformations and the operators above.

Φ ϕk Φ



MultiplexNet Architecture

x′ 

Φ = ϕ1 ∨ ϕ2 ∨ … ∨ ϕK

…
…

Multiplexor

y

x1 ⊧ ϕ1

xK ⊧ ϕK

xk ⊧ ϕk



Mul$plexNet Architecture

x′ 

Φ = ϕ1 ∨ ϕ2 ∨ … ∨ ϕK

…
…Multiplexor

Kingma, D.P., Rezende, D.J., Mohamed, S. and Welling, M., 2014. Semi-supervised learning with deep generative models.

Jang, E., Gu, S. and Poole, B., 2016. Categorical reparameterization with gumbel-softmax.

Maddison, C.J., Mnih, A. and Teh, Y.W., 2016. The concrete distribution: A continuous relaxation of discrete random variables.

(x ∣ y = 1) ⊧ ϕ1

(x ∣ y = K) ⊧ ϕK

(x ∣ y = k) ⊧ ϕk
y ∼ p(y ∣ x′ )



Architecture Overview



Example MNIST Label Free Self-Supervision

y1 z1 x1

y2 z2 x2

y3 z3 x3

y4 z4 x4

Image 1 Image 2+ = Image 3 Image 4

+ =



Example MNIST Label Free Self-Supervision

Φ = (y1 = 0 ∧ y2 = 0 ∧ y3 = 0 ∧ y4 = 0)

… ∨ (y1 = 9 ∧ y2 = 9 ∧ y3 = 1 ∧ y4 = 8)

y1 z1 x1

y2 z2 x2

y3 z3 x3

y4 z4 x4

∨ (y1 = 0 ∧ y2 = 1 ∧ y3 = 0 ∧ y4 = 1) ∨ …



Example MNIST Label Free Self-Supervision

y1 z1 x1

y2 z2 x2

y3 z3 x3

y4 z4 x4



Conclusions: Part 1 

• Incorporation of logical knowledge (as QFDNF) into the training of deep neural 
networks.

•Approach guarantees 100% constraint satisfaction in a network's output.

•Shown to be both efficient and general.



Lineage 
Semantic loss 

L(α, p) ∝ − log ∑
M⊧α

∏
M⊧li

pi

Xu, Van Den Broeck et al (2018) 



What kind of foundations are emerging?

• Given a loss function  and a regularizing term , the regularized loss 
function is a convex combination , where .


• For any propositional formula , define the probability for interpretation  as:


• 1/  if 


• 0 otherwise 

L L′ 

(1 − λ)L + λL′ λ ∈ [0,1]

ϕ m

|ℳϕ | m ∈ ℳϕ



The notion of a constraint distribution 

• Given constraint distribution , we define regularizer  for  as:


• 


• For example, given events , 


c ∈ 𝒟 Lc p ∈ 𝒟

Lc(p) = dist𝒟(p, c)

E = {e1, …, en}

dist𝒟(p, q) ∝ ∑
e∈E

p(e) × q(e)



Which means logically: 




Compare to semantic loss: 





There seems to be principled foundation for constrained distributions

Lϕ(p) ∝ ∑
e∈ℳϕ

p(e) ×
1

|ℳϕ |

L(α, p) ∝ − log ∑
M⊧α

∏
M⊧li

pi



Conclusions 

• Interesting challenge: get distributions to obey constraints 


• Use geometric interpretation to establish common grounds 


• Can we push expressiveness of constraints?



Are regularisers worth it?

• Whether to use logic-based regularizers in deep learning depends on the 
specific application and the trade-offs between accuracy and computational 
efficiency


• Can improve performance, but their necessity may differ in certain 
applications or may not be worth the added computational cost


• What about expressiveness?


• Hybrid approach of external predicates 


• Symbolic execution engine allows for increased modularity?


