Semantic objective functions Unifying some types of loss functions

Agenda

- MultiplexNet Towards Fully Satisfied Logical Constraints in Neural Networks.
- Some ideas for unifying strategies

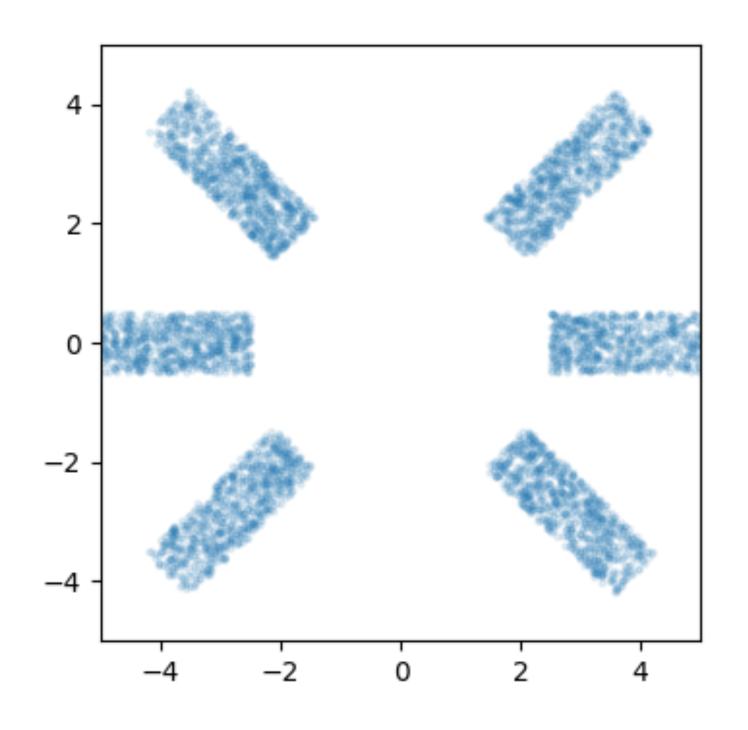
Overview

- Incorporation of expert knowledge into the training of deep neural networks.
- Domain knowledge represented as a quantifier-free logical formula in disjunctive normal form (DNF).
- Latent Categorical variable that learns to choose which constraint term optimizes the error function.
- Approach guarantees 100% constraint satisfaction in a network's output.

Results:

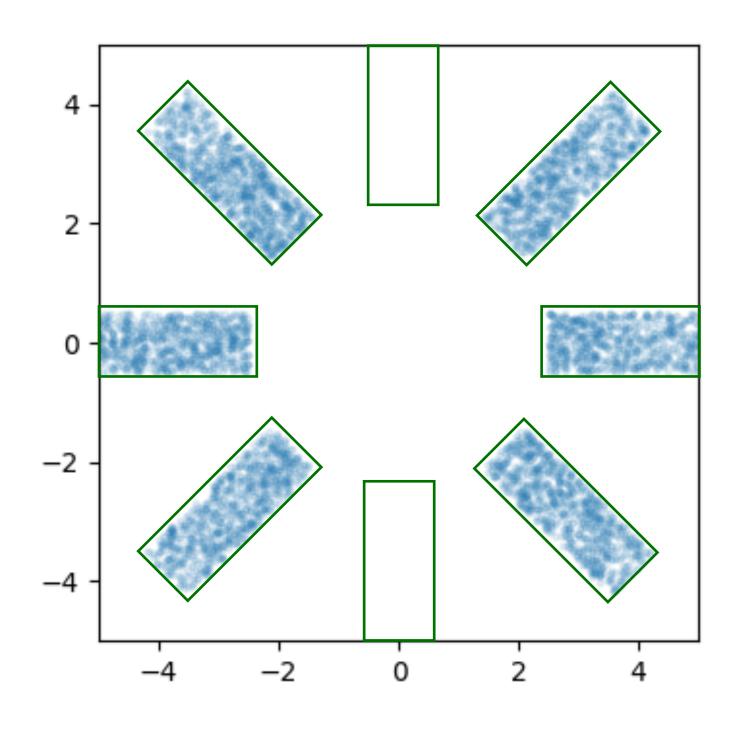
- Approximates unknown distributions well, requiring fewer data samples than the alternative approaches.
- Shown to be both efficient and general.

Motivating Example - Density Estimation Task



Generated Data

Motivating Example - How to use Constraints in Training?

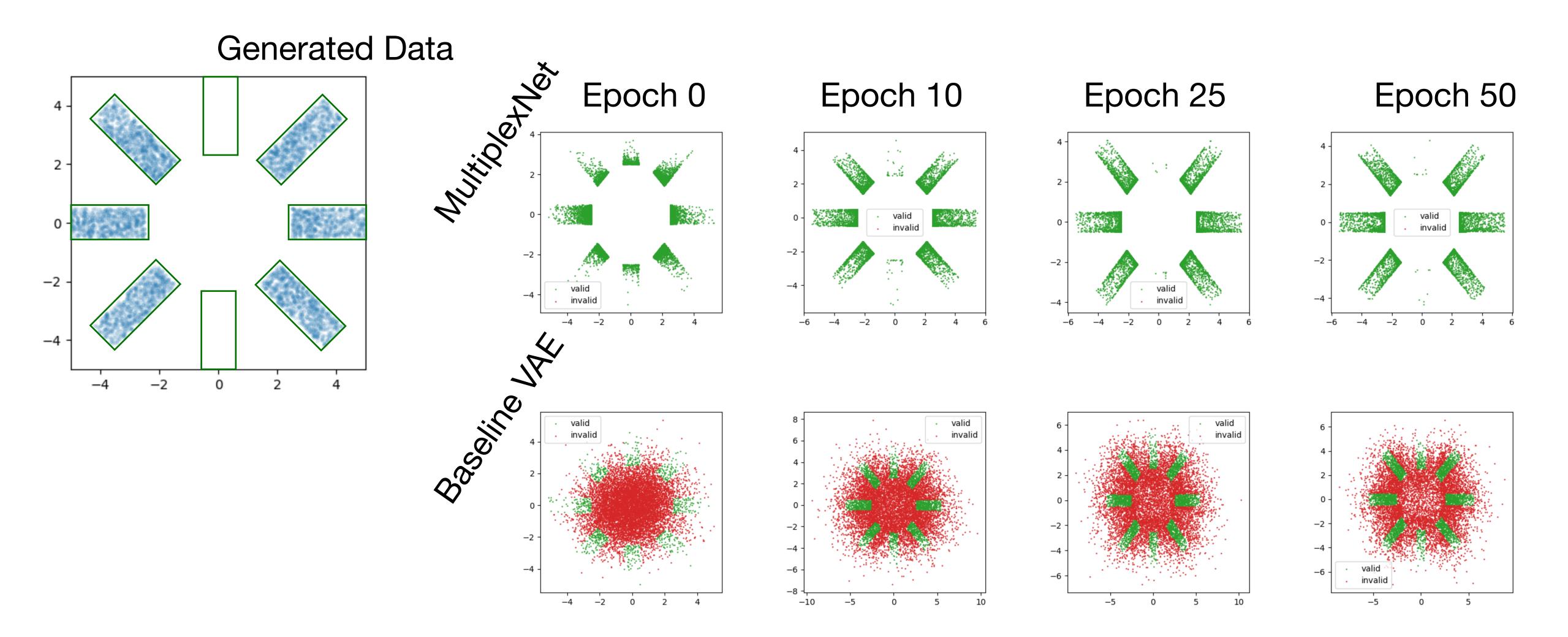


Generated Data

$$\Phi = (x_1 > -.5 \land x_1 < .5 \land x_2 > .5 \land x_2 < 4) \lor \dots$$

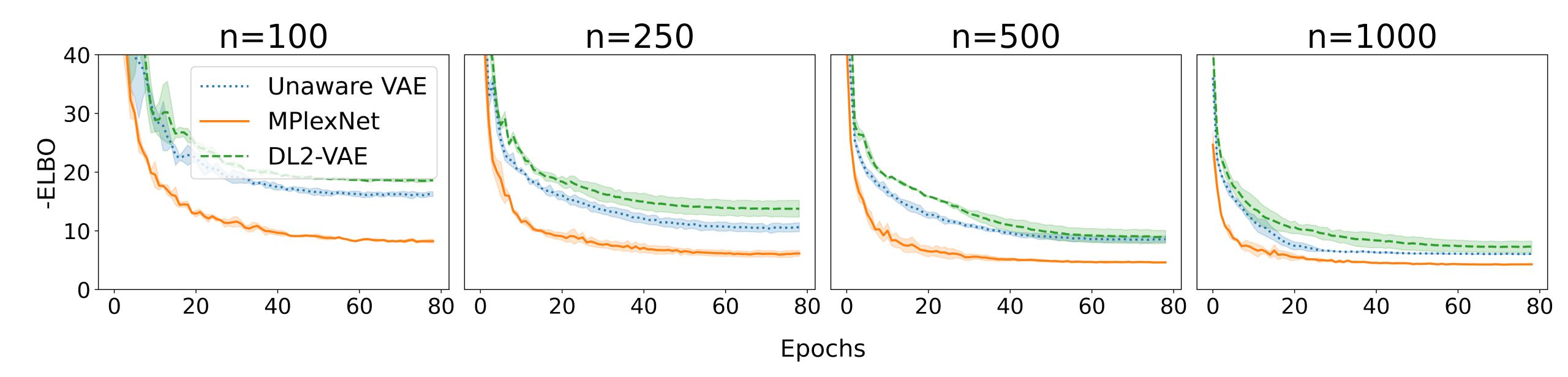
$$\dots \lor (x_1 + x_2 > -.5 \land x_1 + x_2 < .5 \land x_1 - x_2 > .5 \land x_1 - x_2 < 4)$$

Motivating Example - Force Constraint Satisfaction

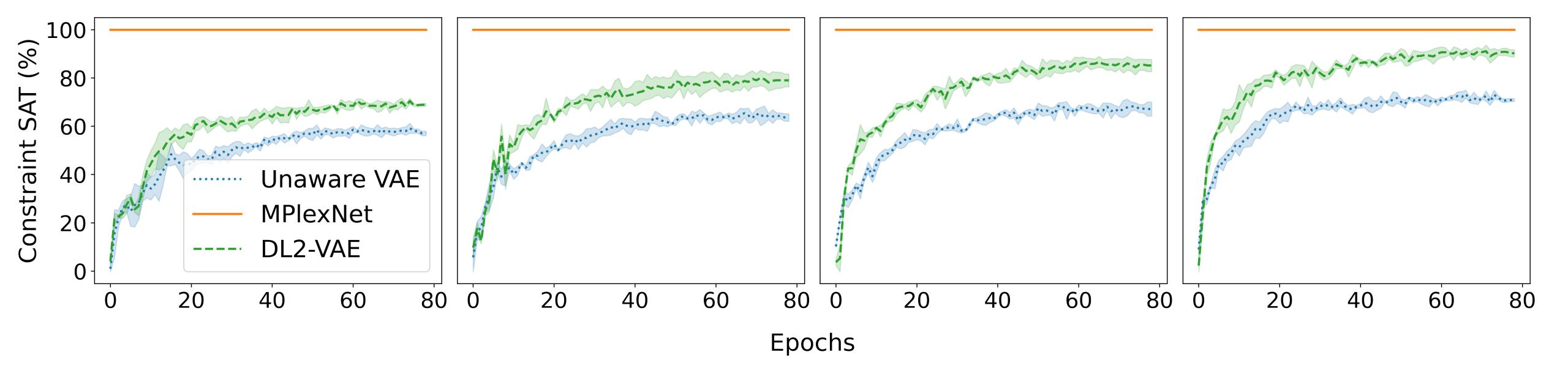


Motivating Example - Desiderata

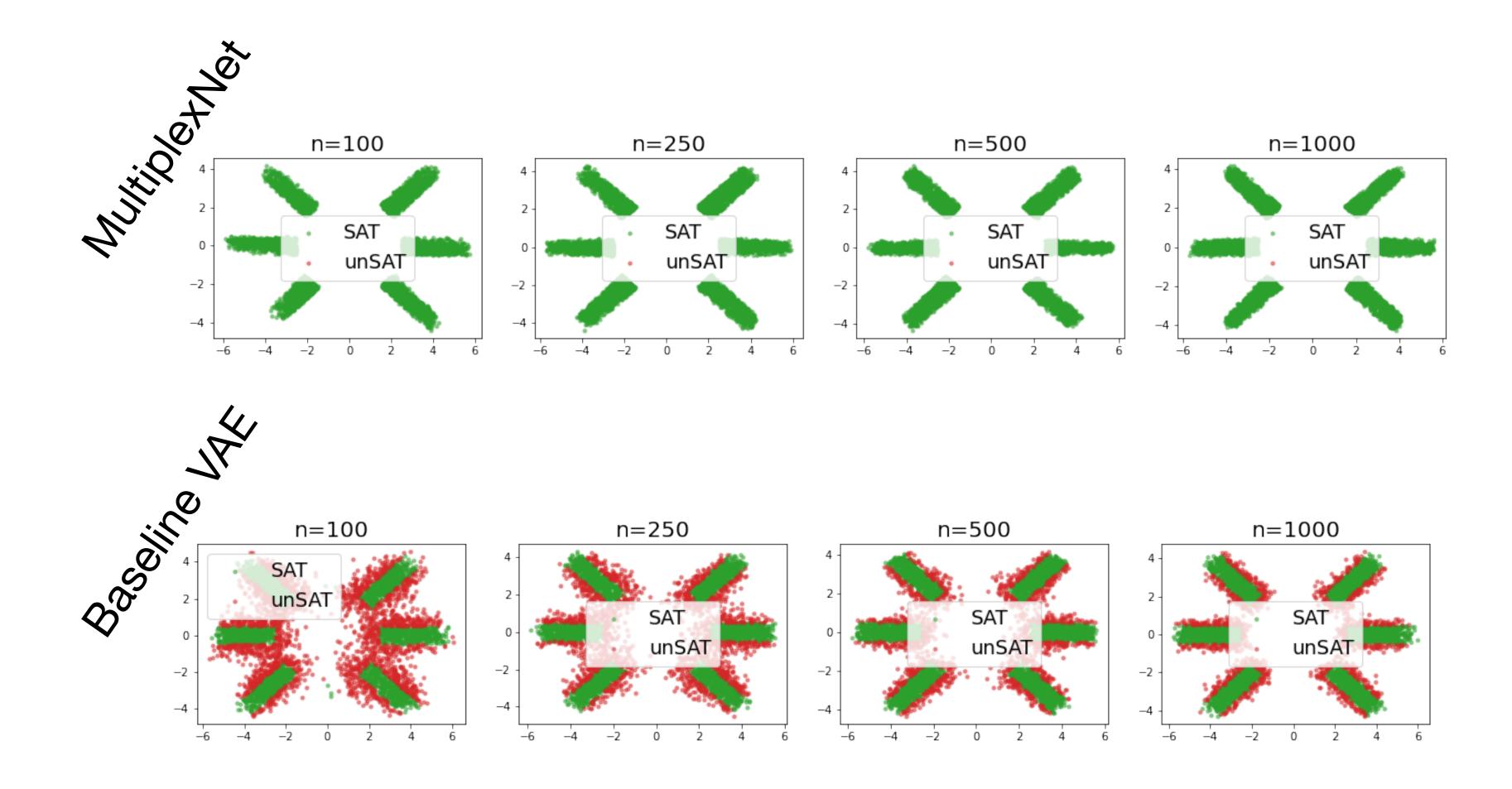
(1) Data Efficiency



(2) Predictability (safety critical systems)



Motivating Example - Posterior Samples

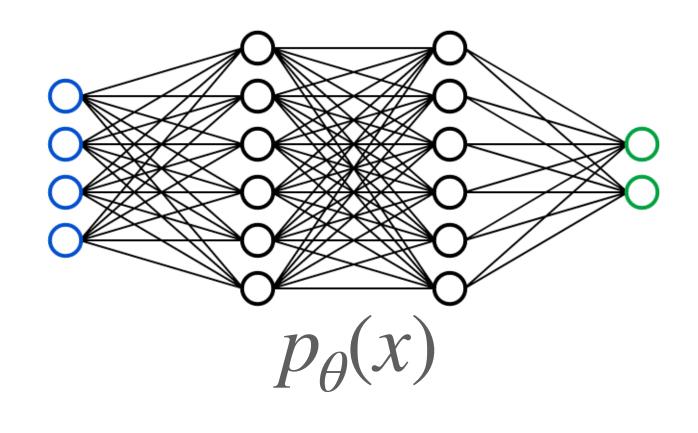


Constraining Probabilistic Models

(1) Given a dataset from unknown density p^* but known to entail Φ :

$$X = \{x^{(0)}, \dots, x^{(N)} \mid x^{(i)} \sim^{iid} p^*(x), x^{(i)} \models \Phi\}$$

Constraining Probabilistic Models - Standard Training



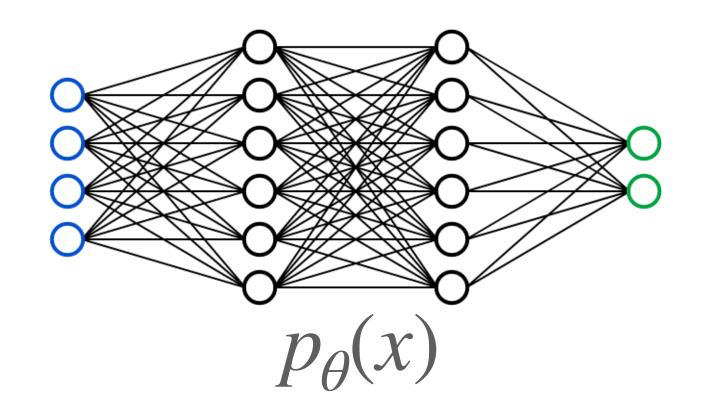
(1) Given a dataset from unknown density p^* but known to entail Φ :

$$X = \{x^{(0)}, \dots, x^{(N)} \mid x^{(i)} \sim^{iid} p^*(x), x^{(i)} \models \Phi\}$$

(2) Train a parameterised model to maximise the likelihood of the data:

Design: $p_{\theta}(x)$

Train: $p_{\theta^*}(x) = \arg\max_{\theta} (\log p_{\theta}(X))$



(1) Given a dataset from unknown density p^* but known to entail Φ :

$$X = \{x^{(0)}, \dots, x^{(N)} \mid x^{(i)} \sim^{iid} p^*(x), x^{(i)} \models \Phi\}$$

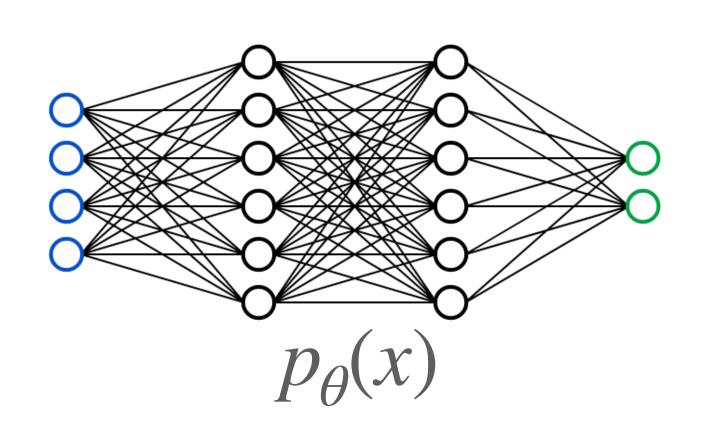
(2) Train a parameterised model to maximise the likelihood of the data:

Design:
$$p_{\theta}(x)$$

Train:
$$p_{\theta^*}(x) = \arg\max_{\theta} (\log p_{\theta}(X))$$

But what about Φ ?

Constraining Probabilistic Models - Solutions to Include Φ

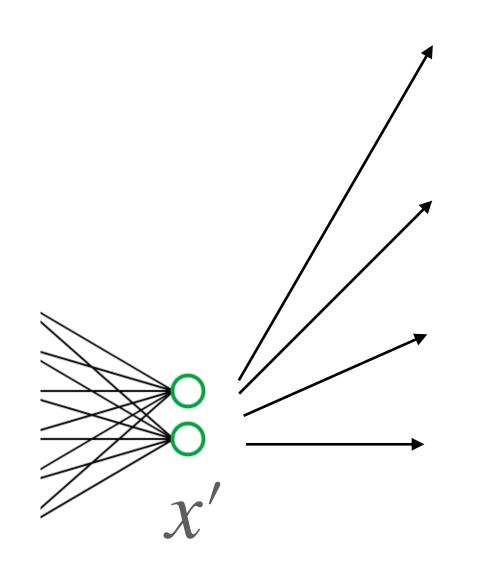


Train:
$$p_{\theta^*}(x) = \arg\max_{\theta} [\log p_{\theta}(X) + L_{\Phi}(X)]$$

(2) Reparameterise output of network:

Design: $p_{\theta}(x)$ such that the output of the network follows Φ by construction.

Network Output Non-Linearities - Standard Transformations can Restrict Output



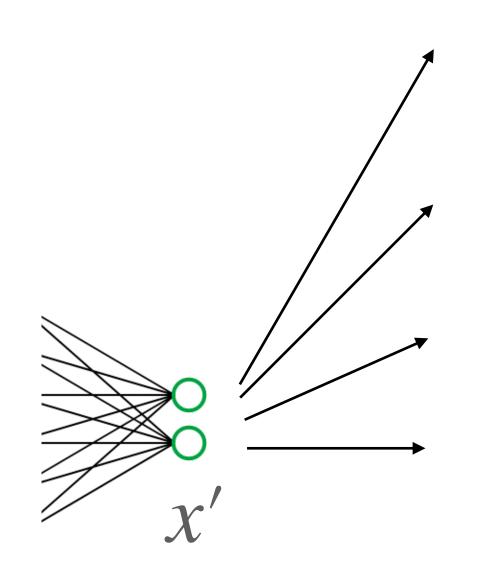
Identity. E.g. a regression network trained on MSE

Softplus. Constrains output to be element wise positive.

Sigmoid. Output is $\in (0,1)$.

ReLU. Constrains output to be element wise ≥ 0 .

Network Output Non-Linearities



Identity. E.g. a regression network trained on MSE

Softplus. Constrain output to be element wise positive.

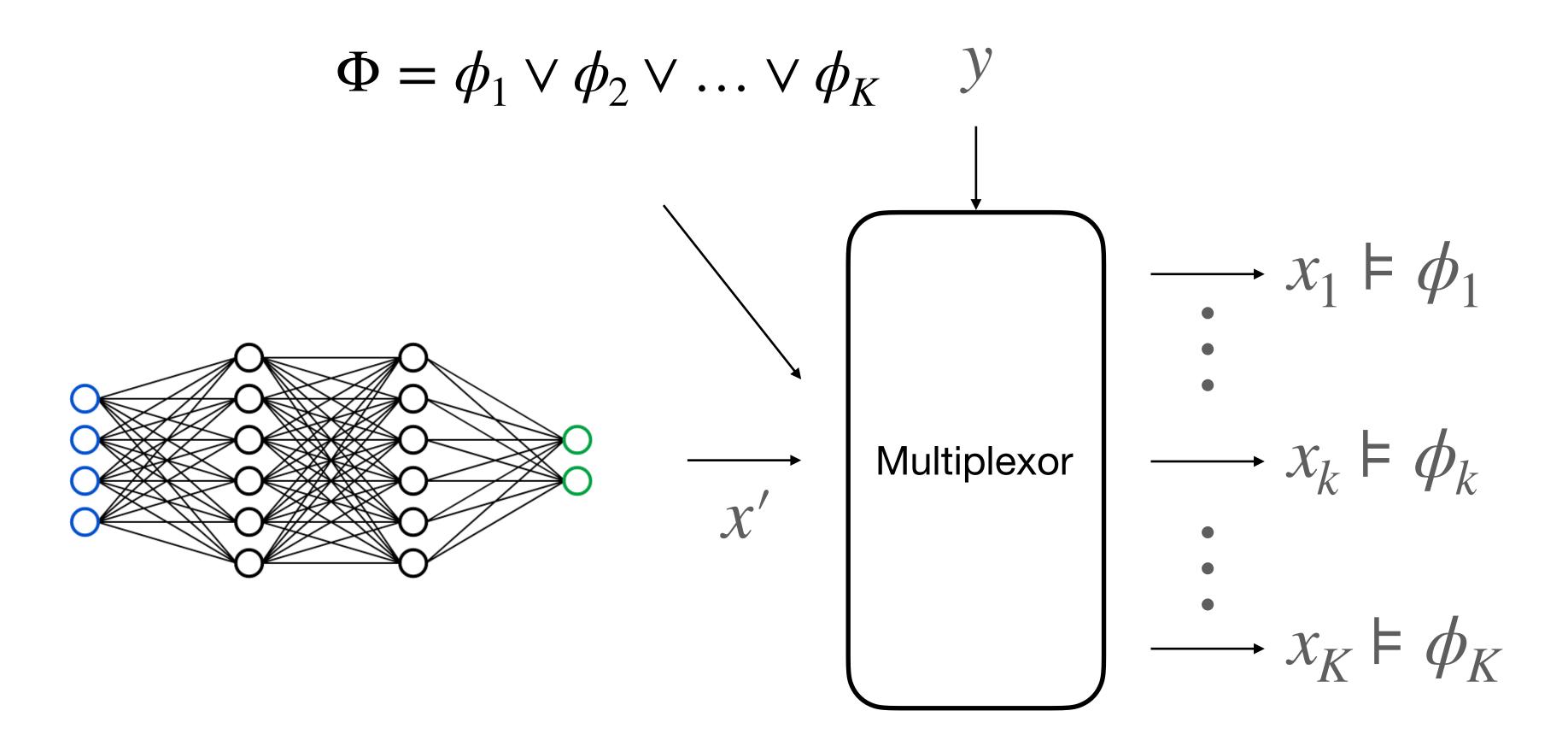
Sigmoid. Output is $\in (0,1)$.

ReLU. Constrain output to be element wise ≥ 0 .

$$\Phi = \phi_1 \lor \phi_2 \lor \dots \lor \phi_K$$

Idea: If Φ is given in DNF, each term ϕ_k in Φ can be suitably represented by a combination of affine transformations and the operators above.

MultiplexNet Architecture



MultiplexNet Architecture

$$\Phi = \phi_1 \vee \phi_2 \vee \ldots \vee \phi_K$$

$$(x \mid y = 1) \models \phi_{1}$$

$$(x \mid y = 1) \models \phi_{1}$$

$$(x \mid y = k) \models \phi_{k}$$

$$(x \mid y = k) \models \phi_{k}$$

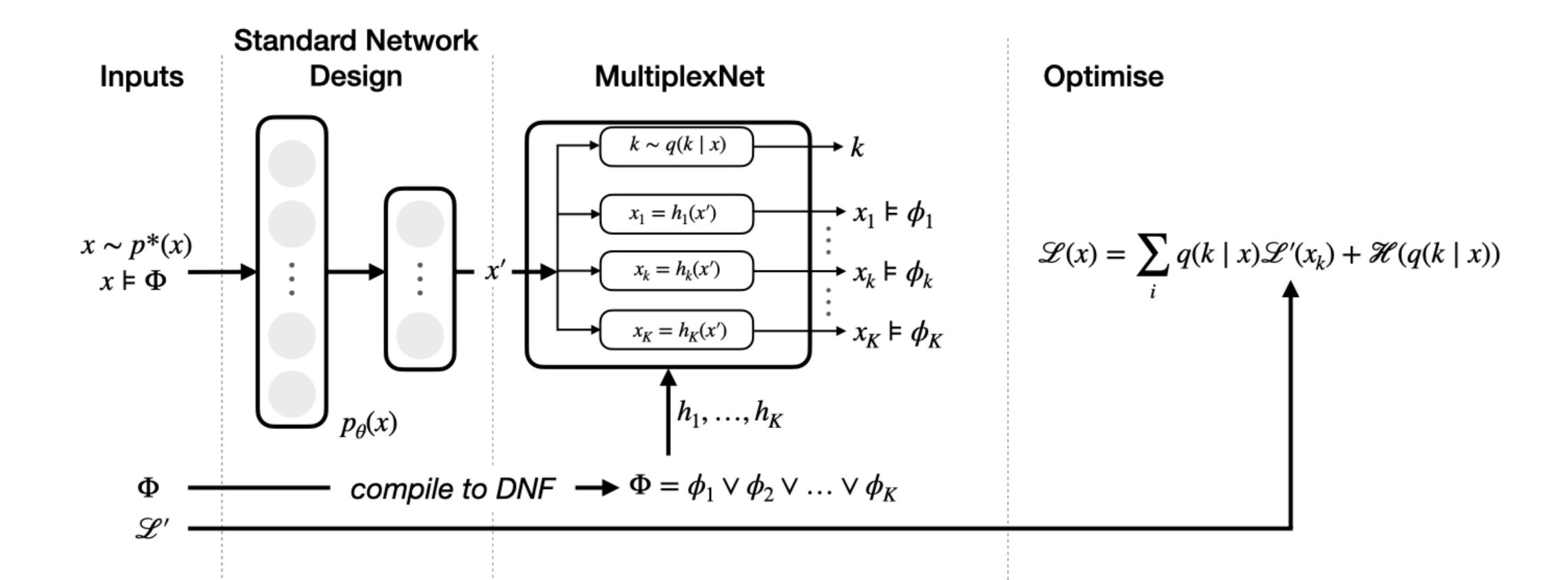
$$(x \mid y = k) \models \phi_{k}$$

Kingma, D.P., Rezende, D.J., Mohamed, S. and Welling, M., 2014. Semi-supervised learning with deep generative models.

Jang, E., Gu, S. and Poole, B., 2016. Categorical reparameterization with gumbel-softmax.

Maddison, C.J., Mnih, A. and Teh, Y.W., 2016. The concrete distribution: A continuous relaxation of discrete random variables.

Architecture Overview



Example MNIST Label Free Self-Supervision

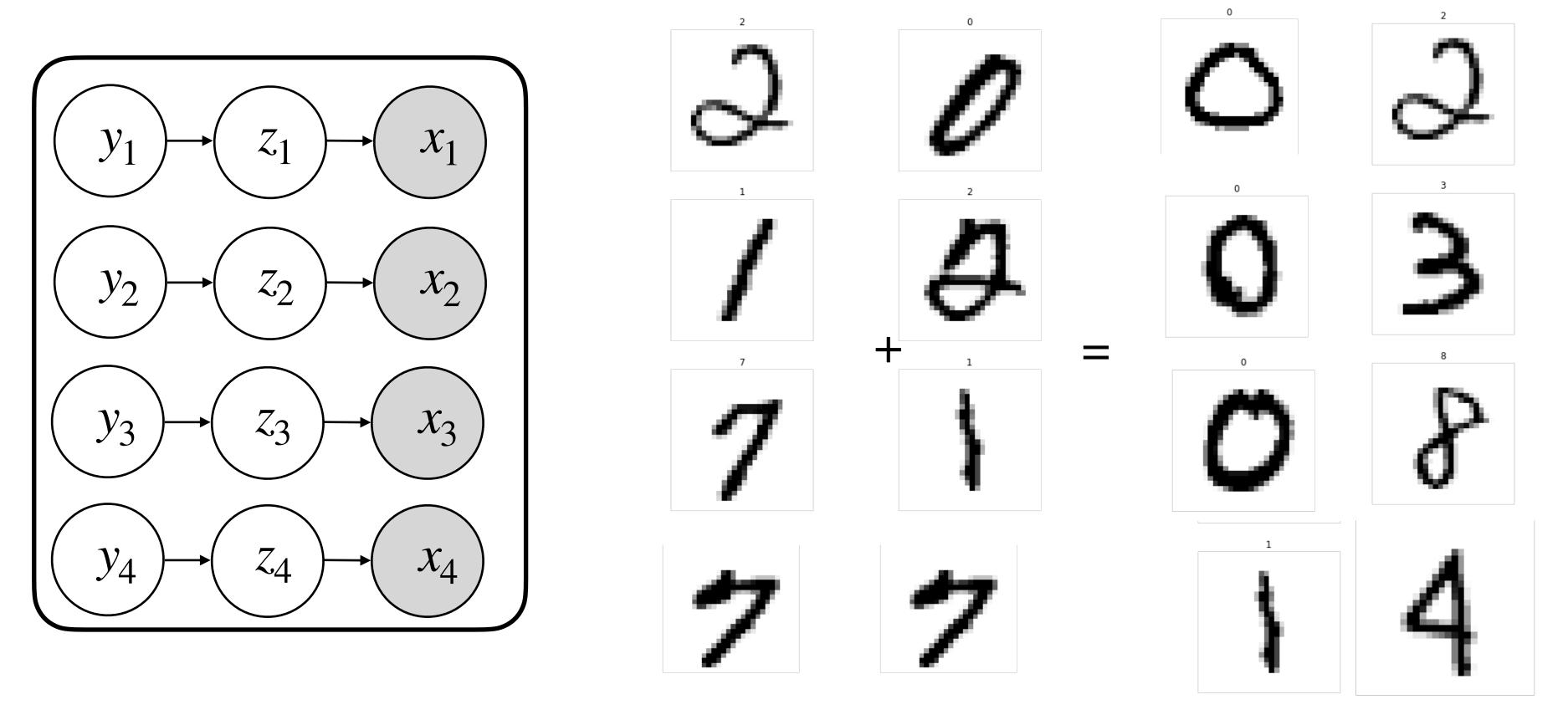
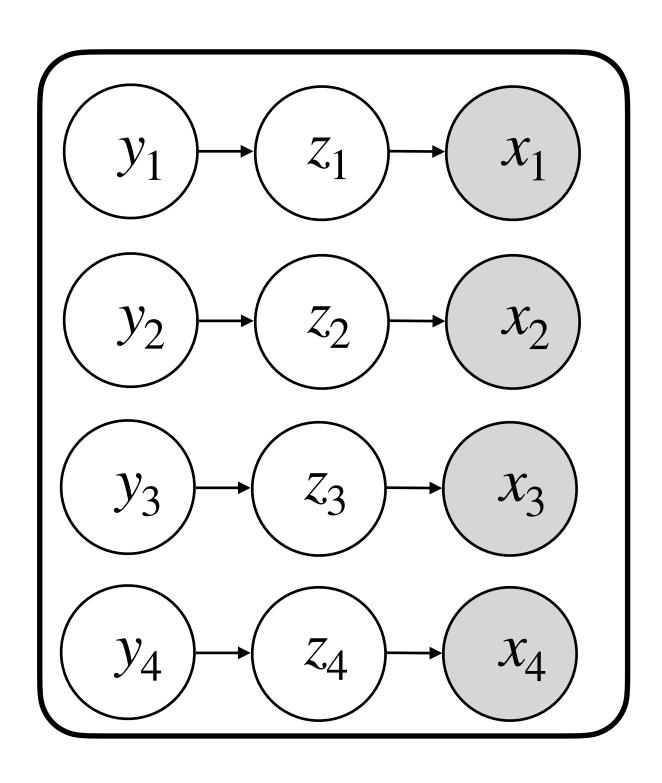


Image-1 Image-2 Image 3 Image 4

Example MNIST Label Free Self-Supervision

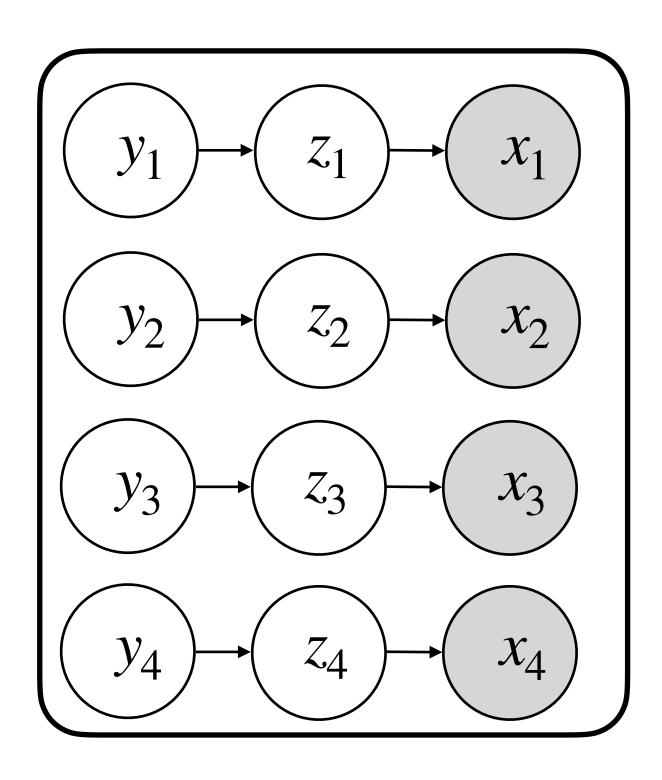


$$\Phi = (y_1 = 0 \land y_2 = 0 \land y_3 = 0 \land y_4 = 0)$$

$$\lor (y_1 = 0 \land y_2 = 1 \land y_3 = 0 \land y_4 = 1) \lor \dots$$

$$\dots \lor (y_1 = 9 \land y_2 = 9 \land y_3 = 1 \land y_4 = 8)$$

Example MNIST Label Free Self-Supervision



Conclusions: Part 1

- Incorporation of logical knowledge (as QFDNF) into the training of deep neural networks.
- Approach guarantees 100% constraint satisfaction in a network's output.
- Shown to be both efficient and general.

Lineage

Semantic loss

$$L(\alpha, p) \propto -\log \sum_{M \models \alpha} \prod_{M \models l_i} p_i$$

What kind of foundations are emerging?

- Given a loss function L and a regularizing term L', the regularized loss function is a convex combination $(1 \lambda)L + \lambda L'$, where $\lambda \in [0,1]$.
- For any propositional formula ϕ , define the probability for interpretation m as:
 - $1/|\mathcal{M}_{\phi}|$ if $m \in \mathcal{M}_{\phi}$
 - 0 otherwise

The notion of a constraint distribution

- Given constraint distribution $c \in \mathcal{D}$, we define regularizer L_c for $p \in \mathcal{D}$ as:
 - $L_c(p) = dist_{\mathcal{D}}(p, c)$
- For example, given events $E = \{e_1, ..., e_n\}$,

$$dist_{\mathcal{D}}(p,q) \propto \sum_{e \in E} \sqrt{p(e)} \times \sqrt{q(e)}$$

Which means logically:

$$L_{\phi}(p) \propto \sum_{e \in \mathcal{M}_{\phi}} p(e) \times \frac{1}{|\mathcal{M}_{\phi}|}$$

Compare to semantic loss:

$$L(\alpha, p) \propto -\log \sum_{M \models \alpha} \prod_{M \models l_i} p_i$$

There seems to be principled foundation for constrained distributions

Conclusions

- Interesting challenge: get distributions to obey constraints
- Use geometric interpretation to establish common grounds
- Can we push expressiveness of constraints?

Are regularisers worth it?

- Whether to use logic-based regularizers in deep learning depends on the specific application and the trade-offs between accuracy and computational efficiency
- Can improve performance, but their necessity may differ in certain applications or may not be worth the added computational cost
- What about expressiveness?
- Hybrid approach of external predicates
- Symbolic execution engine allows for increased modularity?