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• Uninformative bounds 

• Making significant progress but still far from capturing generalisation 

My belief: we are missing the right intuitions

Theory
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Where is Generalisation Right Now?
Practice

• Goal: predict performance of a learned model 

• Poorly founded 

• Difficult to create fair and extensive evaluation 

• Can help build intuitions
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How Has Robustness Been 
Measured?
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Pitfalls of Measuring Robustness 
Through Distortion
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Are distorted images consistently associated with a 
particular class?
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Data Interference Index

• Model associates distortions with a particular class 

• This happens consistently across runs
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•             : increase of class    for run  

•         : class with maximum average increase across runs
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Interference Occurs in Benchmark Data Sets

• Models: Basic, FMix, MixUp, CutMix

basic MixUp FMix CutMix

CIFAR-10 2.82±0.44 2.40±0.59 0.59±0.12 0.31±0.10

CIFAR-100 0.99±0.27 0.88±0.24 0.18±0.10 0.09±0.04

Tiny 1.28±1.13 0.57±0.11 0.67±0.10 0.25±0.11

ImageNet 0.82 1.49 0.58 −

basic MixUp FMix CutMix

CIFAR-10 1.25±0.17 0.47±0.11 0.11±0.04 2.20±0.81

CIFAR-100 1.24±0.35 0.34±0.09 0.12±0.10 1.06±0.32

FashionMNIST 0.21±0.08 0.38±0.06 0.16±0.05 0.12±0.05

Tiny ImageNet 0.52±0.17 0.39±0.03 0.14±0.04 3.46±2.45

ImageNet 0.50 1.50 0.50 −

DI Index for identifying shape bias DI Index for robustness to occlusion



Interference Occurs in Benchmark Data Sets

• This affects robustness measurements
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Data Distortion Robustness Generalisation
measure estimate

introduces
Artefacts

influence Robustness  

Measurement

Putting Things Together



Are there fairer alternatives?



iOcclusion 
An Alternative Measurement
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Prior Approach: CutOcclusion

Measure: accuracy on distorted data 

Sensitive to: 

• Shape of the occluder 

• Local information inside the occluding patch 

• Overall model performance



iOcclusion

∣∣∣A(Dp
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•          : accuracy on data set  

•    : fraction of pixels distorted

A(D) A(D)

∣∣∣A(Dp
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Limitations

Good for uncontrolled settings but … 

• Relies on implicit assumption 

• Robustness to occlusion only



That still leaves us with the need for a way of measuring 
robustness more generally
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Empirically Predicting Generalisation 

• Predicting Generalisation in Deep Learning Challenge

• Why would model that is more robust to this specific distortion 
necessarily be better than another?



Empirically Predicting Generalisation 

• Models with overlapping compression and MixUp accuracy can have 
different generalisation performance

Model 1 Model 2

Test accuracy 95.51±0.10 93.39±0.52

MixUp accuracy 87.18±0.19 87.53±0.62

Compression 4.25±0.03 4.27±0.02



Empirically Predicting Generalisation 

• Similar argument holds for any particular distortion 

• Can we think of all the possible distortions and evaluate against them?



So how can we better measure and enforce 
robustness?



Decision Decompositionality
Vision for Future Work

Occlusion experiments 

+ 

Simplicity bias

Decision is over-reliant 

on a very small 

number of features 



Decision Decompositionality
Vision for Future Work

Can we enforce a more “distributed”/“decoupled” decision?



Going Back…



Take-aways

• Measuring robustness in an unbiased way is difficult 

• Doing so can help us better understand generalisation 

• Decision “decompositionality” could be a way forward




